【摘要】上頁下頁返回結(jié)束2022/3/131第一節(jié)微分方程的基本概念一、問題的提出二、微分方程的定義三、主要問題—求方程的解四、小結(jié)思考題第五章常微分方程上頁下頁返回結(jié)束2022/3/132例1一曲線通過點(diǎn)(1,2),
2025-04-10 12:49
【摘要】《微分方程數(shù)值解》實(shí)驗(yàn)教學(xué)大綱(2007年制訂)課程代碼:0231101804課程性質(zhì):非獨(dú)立設(shè)課 課程分類:專業(yè)課程實(shí)驗(yàn)學(xué)分: 實(shí)驗(yàn)學(xué)時(shí):18學(xué)時(shí)適用專業(yè):信息與計(jì)算科學(xué) 開課單位:數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院一、實(shí)驗(yàn)教學(xué)目標(biāo)本實(shí)驗(yàn)教學(xué)目標(biāo)是通過編寫程序、分析數(shù)值結(jié)果、寫數(shù)值實(shí)
2024-11-05 17:00
【摘要】常微分方程習(xí)題集華東師范大學(xué)數(shù)學(xué)系
2025-08-11 15:07
【摘要】常微分方程學(xué)習(xí)輔導(dǎo)(一)初等積分法微分方程的古典內(nèi)容主要是求方程的解,用積分的方法求常微分方程的解,叫做初等積分法,而可用積分法求解的方程叫做可積類型。初等積分法一直被認(rèn)為是常微分方程中非常有用的基本解題方法之一,也是初學(xué)者必須接受的最基本訓(xùn)練之一。在本章學(xué)習(xí)過程中,讀者首先要學(xué)會(huì)準(zhǔn)確判斷方程的可積類型,然后要熟練掌握針對(duì)不同可積類型的5種解法,最后在學(xué)習(xí)
【摘要】西南科技大學(xué)理學(xué)院1第五講全微分方程與積分因子三、積分因子法一、全微分方程與原函數(shù)二、全微分方程判定定理與不定積分法四、小結(jié)西南科技大學(xué)理學(xué)院2定義:即(,)(,)(,)duxyMxydxNxydy??(
2024-12-03 21:13
【摘要】第九章常微分方程的數(shù)值解法§1、引言§2、初值問題的數(shù)值解法單步法§3、龍格-庫塔方法§4、收斂性與穩(wěn)定性§5、初值問題的數(shù)值解法―多步法§6、方程組和剛性方程§7、習(xí)題和總結(jié)主要內(nèi)容主
2024-09-14 15:59
【摘要】第5章微分方程一、內(nèi)容精要(一)主要定義微分方程中出現(xiàn)的未知函數(shù)導(dǎo)數(shù)的最高階數(shù)叫做微分方程的階,本光盤只限討論常微分方程.含有自變量、未知函數(shù)以及未知函數(shù)的導(dǎo)數(shù)或微分的方程叫做微分方程;未知
2025-03-08 14:35
【摘要】第四次:常微分方程數(shù)值解一:引言:1:微分方程在數(shù)模中有重要作用。2:列出微分方程僅是第一步,求解微方程為第二步。3:但僅有少數(shù)微分方程可解析解,大部分非線性方程,變系數(shù)方程,均所謂“解不出來”)1()()(()()]()[()(:1____])
2024-11-01 11:53
【摘要】???
2025-08-08 23:02
【摘要】第六章常微分方程—不定積分問題—微分方程問題推廣微分方程的基本概念一階微分方程二階微分方程用Matlab軟件解二階常系數(shù)非齊次微分方程微分方程的基本概念微分方程的基本概念引例幾何問題物理問題解:設(shè)所求曲線方程為y=y(x),則有如下關(guān)系式:
2025-06-16 01:07
【摘要】常微分方程試題庫(一)、填空題(每空3分)1、當(dāng)_______________時(shí),方程0),(),(??dyyxNdxyxM稱為恰當(dāng)方程,或稱全微分方程,其原函數(shù)為:。2、形如________________的方程,稱為齊次方程。3、求),(yxfdxdy?滿足00)(
2025-02-27 04:05
【摘要】4.給定一階微分方程,(1).求出它的通解;(2).求通過點(diǎn)的特解;(3).求出與直線相切的解;(4).求出滿足條件的解;(5).繪出(2),(3),(4)中的解得圖形。解:(1).通解顯然為;(2).把代入得,故通過點(diǎn)的特解為;(3).因?yàn)樗笾本€與直線相切,所以只有唯一解,即只有唯一實(shí)根,從而,故與直線相切的解是;(4).把代入即得
2025-08-11 15:00
【摘要】第十二章常微分方程(A)一、是非題1.任意微分方程都有通解。(X)2.微分方程的通解中包含了它所有的解。(X)3.函數(shù)是微分方程的解。(O)4.函數(shù)是微分方程的解。(X)5.微分方程的通解是(為任意常數(shù))。(O)6.是一階線性微分方程。(X)7.不是一階線性微分方程。(O)8.的特征方程為
【摘要】常微分方程習(xí)題及解答一、問答題:1.常微分方程和偏微分方程有什么區(qū)別?微分方程的通解是什么含義?答:微分方程就是聯(lián)系著自變量,未知函數(shù)及其導(dǎo)數(shù)的關(guān)系式。常微分方程,自變量的個(gè)數(shù)只有一個(gè)。偏微分方程,自變量的個(gè)數(shù)為兩個(gè)或兩個(gè)以上。常微分方程解的表達(dá)式中,可能包含一個(gè)或幾個(gè)任意常數(shù),若其所包含的獨(dú)立的任意常數(shù)的個(gè)數(shù)恰好與該方程的階數(shù)相同,這樣的解為該微分方程的通解。2.舉例闡述常
2025-05-12 01:12
【摘要】常微分方程的基本概念可分離變量的微分方程一階微分方程與可降階的高階微分方程二階常系數(shù)微分方程常微分方程的應(yīng)用舉例第9章常微分方程結(jié)束前頁結(jié)束后頁含有未知函數(shù)的導(dǎo)數(shù)(或微分)的方程稱為微分方程。定義一常微分方程的基
2025-03-08 07:39