【摘要】第三章線性方程組§1消元法一授課內容:§1消元法二教學目的:理解和掌握線性方程組的初等變換,同解變換,會用消元法解線性方程組.三教學重難點:用消元法解線性方程組.四教學過程:所謂的一般線性方程組是指形式為(1)的方程組,其中代表個未知量,是方程的個數,(,)稱為方程組的系數,()稱為常數項.所謂
2025-06-04 13:05
【摘要】§矩陣的秩列行和中任取矩陣,在是設kkAnmA?個元素位于這些行列交叉處的2),,(knkmk??階行列式,組成的中的相對位置不變保持在kA)(.階子式的稱為kA階子式)(矩陣的定義k1階子式是一個數。注:k一、秩的概念與性質的秩,為的子式的最高階數,稱中不為矩陣AA0).(Ar記作.0規(guī)定零
2024-09-04 13:22
【摘要】解線性方程組的直接方法的MATLAB程序解線性方程組的直接方法在這章中我們要學習線性方程組的直接法,特別是適合用數學軟件在計算機上求解的方法.方程組的逆矩陣解法及其MATLAB程序線性方程組有解的判定條件及其MATLAB程序判定線性方程組是否有解的MATLAB程序function[RA,RB,n]=jiepb(A,b)B
2024-10-01 12:40
【摘要】數值分析數值分析第三節(jié)用矩陣分解法求解線性方程組ALUAxb??一、利用三角分解求解PALUAxb??二、用列主元的三角分解求解TPAQLUAxb??三、用全主元的三角分解求解TCholeskyALLAxb??四、利用分解求解AQRAxb??五、利用正交分解求解TAUV
2024-12-05 23:59
【摘要】常系數線性方程組基解矩陣的計算董治軍(巢湖學院數學系,安徽巢湖238000)摘要:微分方程組在工程技術中的應用時非常廣泛的,不少問題都歸結于它的求解問題,基解矩陣的存在和具體尋求是不同的兩回事,一般齊次線性微分方程組的基解矩陣是無法通過積分得到的,但當系數矩陣是常數矩陣時,可以通過方法求出基解矩陣,這時可利用矩陣指數t,給出基解矩陣的一般形式,本文針對應用最廣泛的常系數
2025-08-10 07:32
【摘要】線性方程組的求解中國青年政治學院鄭艷霞?使用建議:建議教師具備簡單的MATHMATICA使用知識。?課件使用學時:4學時?面向對象:文科經濟類本科生?目的:掌握線性方程組的知識點學習。為民主黨投票為共和黨投票為自由黨投票?????
2024-12-01 12:10
【摘要】第四章 線性方程組消元法教學目的:1、掌握線性方程組的和等變換,矩陣的初等變換等概念。理解線性方程組的和等變換是同解變換,以及線性方程組的初等變換可用增廣矩陣的相應的行初等變換代替。2、熟練地掌握用消元發(fā)解線性方程組,以及判斷線性方程組有沒有解和解的個數。設方程組:a11x1+a12x2+…+a1nxn=b1;a
【摘要】線性方程組的解法解線性方程組的迭代法IterativeMethodsforLinearSystemsJacobi迭代和Gauss-Seidel迭代迭代法的矩陣表示MatrixformoftheIterativeMethods線性方程組的解法在計算數學中占有極其重要的地位。線性方程組的解法大致分為迭代法與直接法
2024-09-17 11:23
【摘要】第三章線性方程組的解法§2 作業(yè)講評2§引言§雅可比(Jacobi)迭代法§高斯-塞德爾(Gauss-Seidel)迭代法§超松馳迭代法§迭代法的收斂性§高斯消去法§高斯主元素消去法§3 作業(yè)講評3§三角分解法§追趕法
2024-09-27 03:33
【摘要】第2章線性代數方程組第2章線性代數方程組11112211211222221122()nnnnnnnnnnxxxxxxxxx???????????????????????????????線性代數方程組
2024-12-01 16:20
【摘要】幾何與代數主講:王小六線性代數的相關資料:1《IntroductiontoLinearAlgebra》,GilbertStrang著,麻省理工開放課程鏈接:2《Linearalgebraanditsapplications》/線性代數及其應用/[美]DavidC.Lay著3
2025-06-17 05:22
【摘要】1分別用矩陣求逆、矩陣除法以及矩陣分解求線性方程的解。2下面是一個線性病態(tài)方程組:(1)求方程的解。(2)將方程右邊向量元素b3改為[::],再求解,并比較b3的變化和解的相對變化。(3)計算系數矩陣A和條件數并分析結論。解:1-1A=[2,3,5;3,7,4;1,-7,1];B=[10,3,5]X=A\B.'
2025-05-11 07:03
【摘要】第三章線性方程組:1.設矩陣A=,若齊次線性方程組Ax=0有非零解,則數t=(2)2.若5階矩陣A的秩R(A)=2,則齊次方程Ax=0的基礎解系所含向量的個數是(3)3.設非齊次線性方程組Ax=b的增廣矩陣為,則該方程組的通解為()4.設四元非齊次線性方程組的系數矩陣A的秩為3,已經它的三個解向量為其中,則該方程組的通解為(
2024-09-27 04:58
【摘要】一、矩陣的初等變換定義對矩陣進行下列三種變換,稱為矩陣的初等變換:(1)交換矩陣的任意兩行;(2)矩陣的任意一行乘以非零數k;(3)矩陣的任意一行乘以k加到另外一行。、、行階梯形矩陣,特點是可以畫一條階梯線,線的左下方元素全為零;行簡化階梯形矩陣,其非零行的首非零元為1,且非零元所在列的其它元素都為零。二
2025-07-25 16:29
【摘要】(一)高斯消去法的求解過程,可大致分為兩個階段:首先,把原方程組化為上三角形方程組,稱之為“消去”過程;然后,用逆次序逐一求出三角方程組(原方程組的等價方程組)的解,并稱之為“回代”過程.,下面分別寫出“消去”和“回代”兩個過程的計算步驟.消去過程:第一步:設a11?0,取
2025-03-08 15:17