【總結(jié)】第三章線性方程組:1.設(shè)矩陣A=,若齊次線性方程組Ax=0有非零解,則數(shù)t=(2)2.若5階矩陣A的秩R(A)=2,則齊次方程Ax=0的基礎(chǔ)解系所含向量的個(gè)數(shù)是(3)3.設(shè)非齊次線性方程組Ax=b的增廣矩陣為,則該方程組的通解為()4.設(shè)四元非齊次線性方程組的系數(shù)矩陣A的秩為3,已經(jīng)它的三個(gè)解向量為其中,則該方程組的通解為(
2024-08-26 04:58
【總結(jié)】一、矩陣的初等變換定義對矩陣進(jìn)行下列三種變換,稱為矩陣的初等變換:(1)交換矩陣的任意兩行;(2)矩陣的任意一行乘以非零數(shù)k;(3)矩陣的任意一行乘以k加到另外一行。、、行階梯形矩陣,特點(diǎn)是可以畫一條階梯線,線的左下方元素全為零;行簡化階梯形矩陣,其非零行的首非零元為1,且非零元所在列的其它元素都為零。二
2025-06-07 16:29
【總結(jié)】(一)高斯消去法的求解過程,可大致分為兩個(gè)階段:首先,把原方程組化為上三角形方程組,稱之為“消去”過程;然后,用逆次序逐一求出三角方程組(原方程組的等價(jià)方程組)的解,并稱之為“回代”過程.,下面分別寫出“消去”和“回代”兩個(gè)過程的計(jì)算步驟.消去過程:第一步:設(shè)a11?0,取
2025-01-19 15:17
【總結(jié)】上頁下頁返回第二節(jié)矩陣的計(jì)算一、矩陣的加法二、數(shù)與矩陣相乘三、矩陣與矩陣相乘四、矩陣轉(zhuǎn)置五、方陣的行列式六、共軛矩陣七、矩陣的應(yīng)用上頁
2025-08-05 10:13
【總結(jié)】第矩陣的運(yùn)算一.矩陣的加法二.數(shù)與矩陣的乘法三.矩陣與矩陣的乘法四.矩陣的其它運(yùn)算五.小結(jié)思考題1、定義?????????????????????????mnmnmmmmnnnnbababababababababaB
2025-08-05 10:12
【總結(jié)】1第三章2線性方程組是線性代數(shù)中最重要最基本的內(nèi)容之一,是解決很多實(shí)際問題的的有力工具,在科學(xué)技術(shù)和經(jīng)濟(jì)管理的許多領(lǐng)域(如物理、化學(xué)、網(wǎng)絡(luò)理論、最優(yōu)化方法和投入產(chǎn)出模型等)中都有廣泛應(yīng)用.第一章介紹的克萊姆法則只適用于求解方程個(gè)數(shù)與未知量個(gè)數(shù)相同,且系數(shù)行列式非零的線性方程組.本章研究一般線性
2025-05-10 14:25
【總結(jié)】第三章線性代數(shù)方程組及矩陣特征值預(yù)備知識直接法迭代法不可解問題病態(tài)問題§一、對角陣與三角陣1、對角陣:?diag(A)提取m×n的矩陣A的主對角線上元素,生成一個(gè)具有min(m,n)個(gè)元素的列向量diag(A,k)提取第
2025-01-19 15:06
【總結(jié)】湖北民族學(xué)院理學(xué)院2016屆本科畢業(yè)論文(設(shè)計(jì))線性方程組的求解方法及應(yīng)用學(xué)生姓名:付世輝
2025-04-08 02:05
【總結(jié)】LU分解法求解線性方程組L為下三角,U為單位上三角???????????????????????????????????????????nnnnnnnnnnnnuuuuu
2025-07-26 08:09
【總結(jié)】MATLAB與線性代數(shù)的基本運(yùn)算西安電子科技大學(xué)一、矩陣的基本輸入在MATLAB命令窗口輸入:A=[1,2,3;2,3,4]或A=[123234]二、產(chǎn)生特殊矩陣的函數(shù)zeros創(chuàng)建零矩陣
2024-10-18 16:05
【總結(jié)】線性方程組解的結(jié)構(gòu).齊次線性方程組.非齊次線性方程組齊次線性方程組???????????????????000221122221211212111nmnmmnnnnxaxaxaxaxaxaxaxaxa???????
2024-10-14 17:26
【總結(jié)】浙江大學(xué)研究生學(xué)位課程《實(shí)用數(shù)值計(jì)算方法》1第三章線性代數(shù)方程組問題概述直接法迭代法稀疏矩陣其他特殊形式的矩陣浙江大學(xué)研究生學(xué)位課程《實(shí)用數(shù)值計(jì)算方法》2問題概述問題提出
2025-08-01 12:51
【總結(jié)】2022/8/181解線性方程組的直接方法2022/8/182第五章解線性方程組的直接方法§引言?解線性方程組的兩類方法:直接法:經(jīng)過有限次運(yùn)算后可求得方程組精確解的方法(不計(jì)舍入誤差)迭代法:從解的某個(gè)近似值出發(fā),通過構(gòu)造一個(gè)無窮序列去逼近精確解的方法。(一般有限步內(nèi)得不到精確解)20
2025-07-21 10:44
【總結(jié)】一、消元法解線性方程組二、矩陣的初等變換三、小結(jié)思考題第三章矩陣的初等變換與線性方程組第一節(jié)矩陣的初等變換機(jī)動(dòng)目錄上頁下頁返回結(jié)束本章先討論矩陣的初等變換,建立矩陣的秩的概念,并提出求秩的有效方法.再利用矩陣的秩反過來研究齊次線性方程組有非零解的充
2025-08-01 17:41
【總結(jié)】第二章線性方程組高斯消元法矩陣的秩線性方程組解的判定線性方程組的解取決于???????????????????nnnnnnnnnnbxaxaxabxaxaxabxaxaxa???????????????2211
2025-08-01 13:03