【摘要】第一篇:基本不等式與不等式基本證明 課時九基本不等式與不等式基本證明 第一部分:基本不等式變形技巧的應(yīng)用 基本不等式在求解最值、值域等方面有著重要的應(yīng)用,利用基本不等式時,關(guān)鍵在對已知條件的靈活...
2024-10-29 03:11
【摘要】......基本不等式習(xí)專題之基本不等式做題技巧【基本知識】1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時取“=”)(3)若,則(當(dāng)且僅當(dāng)時取“=”)(4)當(dāng)且僅當(dāng)
2025-06-30 23:45
【摘要】第一課(不等式練習(xí)-1)第二課一、一元二次不等式第二課三、四、(不等式練習(xí)-2)第三課(不等式練習(xí)-3)認(rèn)真?。。?!細(xì)心?。?/span>
2025-01-13 12:27
【摘要】—求函數(shù)的最值1、如果a,b是正數(shù),那么(當(dāng)且僅當(dāng)a=b時取“=”號)(均值不等式)abba??2一、基本不等式回顧ab2)2(ba??2abab??2、公式變形:特別地,a=b=0時也成立(當(dāng)a、b∈R成立嗎?)
2024-12-21 19:19
【摘要】菜單課后作業(yè)典例探究·提知能自主落實·固基礎(chǔ)高考體驗·明考情新課標(biāo)·文科數(shù)學(xué)(安徽專用)第四節(jié)基本不等式菜單課
2025-02-23 16:33
【摘要】邊城高級中學(xué)張秀洲1、了解兩個正數(shù)的算術(shù)平均數(shù)與幾何平均數(shù).2、理解定理1和定理2(基本不等式).3、掌握用基本不等式求一些函數(shù)的最值及實際的應(yīng)用問題.自學(xué)教材P5—P8解決下列問題二、掌握用基本不等式求一些函數(shù)的最值及實際的應(yīng)用問題.三、《教材》習(xí)題第5、6、7、8、9、10、11題.
2024-09-03 03:13
【摘要】一、設(shè)疑引入等關(guān)系嗎?找出一些相等關(guān)系或不能在這個圖中數(shù)學(xué)家大會的會標(biāo),你)0)(2(?2,.122222????????baabbabaabbaba你能證明嗎時,等號成立當(dāng)且僅當(dāng)我們有一般地,對于任意實數(shù)二、新知探究稱之為基本不等式通常寫作則若特別地,22,0,0,.2baababb
2024-09-15 05:43
【摘要】例.0,0(1)10,___________(2)10,___________xyxyxyxyxy??????如果那么如果那么25?210?最值定理:(1)和定--積最大.(2)積定--和最小.()xyfd
2024-09-15 04:40
【摘要】高二數(shù)學(xué)(必修五)多媒體課件基本不等式的證明【問題1】把一個物體放在天平的一個盤子上,在另一個盤子上放砝碼使天平平衡,稱得物體的質(zhì)量為,天平的兩臂長略有不同(其它因素不計),那么并非實際質(zhì)量.不過,我們可作第二次測量:把物體調(diào)換到天平的另一盤上,此時稱得物體的質(zhì)量為的質(zhì)量呢?:
2024-09-15 03:53
【摘要】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修5《基本不等式-均值不等式》教學(xué)目標(biāo)?推導(dǎo)并掌握兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個重要定理;利用均值定理求極值。了解均值不等式在證明不等式中的簡單應(yīng)用。?教學(xué)重點(diǎn):?推導(dǎo)并掌握兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個重要定理;利用均值定
2024-09-15 04:41
【摘要】確定不等式恒成立的參數(shù)的取值范圍,是中學(xué)數(shù)學(xué)教學(xué)的難點(diǎn),也是高考的熱點(diǎn)。解答這類問題主要有四種方法:其一,利用一次函數(shù)的單調(diào)性;其二,利用二次函數(shù)的單調(diào)性;其三,分離參數(shù),轉(zhuǎn)化為求函數(shù)的最值;其四,利用數(shù)形結(jié)合法。換個角度看問題,換個方面去解釋,換個方向去思考.設(shè)一次函數(shù)f(x)=ax+b(a≠0),當(dāng)a0
2025-01-13 01:05
【摘要】第2課時基本不等式【課標(biāo)要求】1.理解并掌握定理1、定理2,會用兩個定理解決函數(shù)的最值或值域問題.2.能運(yùn)用平均值不等式(兩個正數(shù)的)解決某些實際問題.【核心掃描】1.基本不等式常用來考查函數(shù)最值等問題,要注意不等式成立的前提條件.(重點(diǎn))2.實際應(yīng)用中的最值問題通常轉(zhuǎn)化為y=ax+bx
2024-09-02 17:21
【摘要】第一篇:基本不等式教案 基本不等式 【教學(xué)目標(biāo)】 1、掌握基本不等式,能正確應(yīng)用基本不等式的方法解決最值問題 2、用易錯問題引入要研究的課題,通過實踐讓同學(xué)對基本不等式應(yīng)用的二個條件有進(jìn)一步的...
2024-10-28 11:37
【摘要】基本不等式說課稿 基本不等式是主要應(yīng)用于求某些函數(shù)的最值及證明的不等式。以下是小編整理的基本不等式說課稿,希望對大家有幫助! 基本不等式說課稿1尊敬的各位考官大家好,我是今天的X號考生,今天我說課...
2024-12-07 02:50
【摘要】第三節(jié)基本不等式及其應(yīng)用基礎(chǔ)梳理1.基本不等式.2abab?(1)基本不等式成立的條件:________.(2)等號成立的條件:當(dāng)且僅當(dāng)________時取等號.a(chǎn)≥0,b≥0a=b2.幾個重要的不等式(1)a2+b2≥________(a,b∈R).(2)baab??___
2025-01-15 16:44