【摘要】我努力,我堅持,我一定能成功222bac??定義圖象方程焦點的關(guān)系||MF1|-|MF2||=2a(02a|F1F2|)F(±c,0)F(0,±c)22221xyab??22221
2025-07-30 18:19
【摘要】教學(xué)設(shè)計方案課題名稱雙曲線及其標(biāo)準(zhǔn)方程姓名王菲菲工作單位河北黃驊中學(xué)年級學(xué)科高二數(shù)學(xué)教材版本人教A版一、教學(xué)內(nèi)容分析在高中數(shù)學(xué)中,雙曲線及其標(biāo)準(zhǔn)方程的課程,在分析初等函數(shù)之前,是了解笛卡爾坐標(biāo)圖線的重點。他是為培養(yǎng)學(xué)生對于坐標(biāo)圖線了解函數(shù)關(guān)系打下基礎(chǔ),其關(guān)鍵在于了解學(xué)生對于圖像認(rèn)識的能力,培養(yǎng)學(xué)生用數(shù)軸圖形了解函數(shù)信息的能力?,F(xiàn)如今在數(shù)學(xué)
2024-09-15 04:13
【摘要】2020年12月19日星期六xyoF1F2M(-c,0)(c,0)(x,y)xyoF1(0,c)F2(0,-c)M(x,y)22221(0)yxabab????22221(0)xyabab????M||MF1|-|MF2||=定
2025-01-15 01:38
【摘要】雙曲線的標(biāo)準(zhǔn)方程(第一課時) ?。ㄒ唬┙虒W(xué)目標(biāo) 掌握雙曲線的定義,會推導(dǎo)雙曲線的標(biāo)準(zhǔn)方程,能根據(jù)條件求簡單的雙曲線標(biāo)準(zhǔn)方程. ?。ǘ┙虒W(xué)教程 【復(fù)習(xí)提問】 由一位學(xué)生口答,教師板書. 問題:橢圓的第一定義是什么? 問題:橢圓的標(biāo)準(zhǔn)方程是怎樣的? 【新知探索】 .雙曲線的概念 如果把上述定義中的“距離的和”改為“距離的差”,那么點的軌跡
2024-08-24 19:04
【摘要】1、我們知道和等于常數(shù)2a(2a|F1F2|)的點的軌跡是平面內(nèi)與兩定點F1、F2的距離的2.引入問題:差等于常數(shù)的點的軌跡是什么呢?平面內(nèi)與兩定點F1、F2的距離的橢圓1F2F??0,c???0,cXYO??yxM,①如圖(A
2024-09-15 03:58
【摘要】雙曲線及其標(biāo)準(zhǔn)方程1.橢圓的定義和等于常數(shù)2a(2a|F1F2|0)的點的軌跡.平面內(nèi)與兩定點F1、F2的距離的1F2F??0,c???0,cXYO??yxM,2.引入問題:差等于常數(shù)的點的軌跡是什么呢?平面內(nèi)與兩定點F1、F2的距離的復(fù)習(xí)|M
2025-01-22 16:21
【摘要】雙曲線及其標(biāo)準(zhǔn)方程練習(xí)題高二一部數(shù)學(xué)組劉蘇文2017年5月2日一、選擇題1.平面內(nèi)到兩定點E、F的距離之差的絕對值等于|EF|的點的軌跡是( )A.雙曲線 B.一條直線C.一條線段 D.兩條射線2.已知方程-=1表示雙曲線,則k的取值范圍是( )A.-10C.k≥0 D.
2025-08-10 15:30
【摘要】選修1-1雙曲線及其標(biāo)準(zhǔn)方程一、選擇題1.已知點F1(0,-13),F(xiàn)2(0,13),動點P到F1與F2的距離之差的絕對值為26,則動點P的軌跡方程為()A.y=0B.y=0(|x|≥13)C.x=0(|y|≥13)D.以上都不對[答案]C[解析]∵||PF1|-
2025-01-31 07:24
【摘要】垓下歌力拔山兮氣蓋世,時不利兮騅不逝,騅不逝兮可奈何,虞兮虞兮奈若何?1、沛公軍霸上駐軍名詞動詞2、沛公欲王(wàng)關(guān)中稱王名詞作動詞3、為(wèi)擊破沛公軍替、給4、范增說(shuì)項羽曰勸說
2024-09-15 19:27
【摘要】2.2雙曲線2.雙曲線的定義與標(biāo)準(zhǔn)方程課堂互動講練知能優(yōu)化訓(xùn)練課前自主學(xué)案學(xué)習(xí)目標(biāo)學(xué)習(xí)目標(biāo),幾何圖形及標(biāo)準(zhǔn)方程的推導(dǎo)過程.2.掌握雙曲線的標(biāo)準(zhǔn)方程.3.會利用雙曲線的定義和標(biāo)準(zhǔn)方程解決簡單的實際問題.課前自主學(xué)案溫故夯基3已知橢圓方程為5x
2025-01-12 02:17
【摘要】富源縣第一中學(xué)葉學(xué)理問題1:橢圓的定義是什么?平面內(nèi)與兩個定點的距離的和等于常數(shù)(大于)的點的軌跡叫做橢圓。21,FF21FF問題2:如果把上述定義中“距離的和”改為“距離的差”那么點的軌跡會發(fā)生怎樣的變化?平面內(nèi)與兩定點F1,F(xiàn)2的距離的差的絕對值等于常數(shù)2a
2025-01-24 22:44
【摘要】雙曲線的概念及標(biāo)準(zhǔn)方程雙曲線的定義平面內(nèi)到兩定點F1,F(xiàn)2的距離的差的絕對值等于常數(shù)(小于|F1F2|)的點的軌跡叫做雙曲線。兩焦點的距離叫做雙曲線的焦距(2c)這兩個定點叫做雙曲線的焦點。1、建系:以線段F1F2所在直線為x軸,線段F1F2的垂直平分
2025-01-12 02:27
【摘要】雙曲線及其標(biāo)準(zhǔn)方程1.橢圓的定義和等于常數(shù)2a(2a|F1F2|0)的點的軌跡.平面內(nèi)與兩定點F1、F2的距離的1F2F??0,c???0,cXYO??yxM,2.引入問題:差等于常數(shù)的點的軌跡是什么呢?平面內(nèi)與兩定點F1、F2的距離的復(fù)習(xí)雙曲
2025-01-22 16:28
【摘要】標(biāo)準(zhǔn)方程? 范圍?|x|≤a,|y|≤b對稱性?關(guān)于x軸、y軸成軸對稱;關(guān)于原點成中心對稱頂點坐標(biāo)?(a,0)、(-a,0)、(0,b)、(0,-b)焦點坐標(biāo)?(c,0)、(-c,0)半軸長?長半軸長為a,短半軸長為b.ab離心率?
2024-08-25 02:40
【摘要】雙曲線的定義及標(biāo)準(zhǔn)方程橢圓的第一定義到平面上兩定點F1,F(xiàn)2的距離之和(大于|F1F2|)為常數(shù)的點的軌跡aPFPF221???橢圓的第二定義(準(zhǔn)線)?點M與定點F的距離和它到定直線L的距離的比是常數(shù)的點的軌跡。標(biāo)準(zhǔn)方程圖象范圍對稱性
2025-01-12 01:25