【摘要】用向量法求二面角例1:在三棱柱ABO—A1B1O1中,平面OBB1O1⊥平面OAB,∠O1OB=600,∠BOA=900,OB=OO1=2,AO=.求3(1)二面角O—AB—O1的大小AOBA1O1B1xyz42arccos例2:已知四棱錐P—ABC
2025-01-12 08:07
【摘要】利用線面角和二面角本質(zhì)解題沈勤龍某天聽了一節(jié)高三某老師的試卷講評課,很有收獲。覺得應(yīng)該寫出來與各位分享,并希望各位不斷提醒自己,在學(xué)習(xí)數(shù)學(xué)的過程中,應(yīng)不斷思考,不斷追求本質(zhì)。首先,我們要認(rèn)識線面角和二面角的兩個本質(zhì)(不作展開,自行理解或證明):本質(zhì)1:一條斜線與已知平面中的任一條直線所成的角中,線面角最小。本質(zhì)2:對于一個銳二面角,在其中一個半平面中的任一條直線與另一個半平面
2025-05-11 12:45
【摘要】第九章直線、平面、簡單幾何體懷化鐵路第一中學(xué)二面角(4)——二面角習(xí)題課第九章直線、平面、簡單幾何體懷化鐵路第一中學(xué)一、朝花夕拾二、兩個平面垂直的判定定理三、兩個平面垂直的性質(zhì)定理一、兩個平面垂直的定義相交成直二面角的兩個平面,叫做互相垂直的平面CDB
2025-01-09 15:28
【摘要】1.如圖,四棱錐中,底面為矩形,底面,,點M在側(cè)棱上,=60°(I)證明:M在側(cè)棱的中點(II)求二面角的大小。2.如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,,E,F(xiàn)分別是BC,PC的中點.(Ⅰ)證明:AE⊥PD;(Ⅱ)若H為PD上的動點,EH與平面PAD所成最大角的正切值為,求二面角E—AF—C的余弦值.E
2025-05-12 06:42
【摘要】二面角仔細(xì)觀察慎重思考認(rèn)真解答開拓創(chuàng)新注意積累勇于探索知識再現(xiàn)什么是二面角?由兩個半平面圍成的幾何圖形ιβα敘述二面角平面角的形成過程ιPBAβα在平面α和平面β的交線ι上任取一點P在平面α內(nèi)
2024-12-21 16:40
【摘要】直線與平面所成的角與二面角(二)-——二面角與平面和平面的垂直關(guān)系1二面角及二面角的平面角平面的一條直線把平面分為兩部分,其中的每一部分都叫做一個半平面。從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。(1)半平面——(2)二面角——llαl
2024-09-14 10:03
【摘要】退出平面與平面垂直的判定定理和性質(zhì)定理(一)判定定理性質(zhì)定理課后思考應(yīng)用作業(yè)小結(jié)引入建筑工人砌墻時,常用一端系有鉛錘的線來檢查所砌的墻面是否和地面垂直,如果系有鉛錘的線和墻面緊貼,問題引入引入那么所砌的墻面與地面垂直。大家知道其中的理論根據(jù)嗎?退出平面與平面垂直
2025-01-12 08:11
【摘要】直線上的一點將直線分割成兩部分,每一部分都叫做射線.射線射線平面內(nèi)的一條直線,把這個平面分成兩部分,每一部分都叫做半平面。思考:平面上的一條直線將平面分割成兩部分,每一部分叫什么名稱?αl從一條直線出發(fā)的兩個半平面所組成的空間圖形稱為什么?在平面幾何中“角”是怎樣定義的?答:從平面內(nèi)一點出發(fā)的兩條
2024-09-15 00:06
【摘要】立體幾何二面角,在長方體1111CDCD?????中,11???,D2????,?、F分別是??、C?的中點.證明1、1C、F、?四點共面,并求直線1CD與平面11CF??所成的角的大小.2.如題(19)圖,三棱錐PABC?中,
2025-01-27 15:52
【摘要】文科立體幾何線面角二面角專題學(xué)校:___________姓名:___________班級:___________考號:___________一、解答題1.如圖,在三棱錐P?ABC中,AB=BC=22,PA=PB=PC=AC=4,O為AC的中點.(1)證明:PO⊥平面ABC;(2)若點M在棱BC上,且二面角M?PA?C為30°,求PC與平面PAM所成角的正
2024-08-05 16:28
2025-01-20 23:19
【摘要】一、作點在面上的射影(作垂線)1、已知矩形中,,,將矩形沿對角線把折起,使移到點,且在平面上的射影恰好在上.(Ⅰ)求證:;(Ⅱ)求證:平面平面;(Ⅲ)求二面角的余弦值.2、在如圖所示的幾何體中,四邊形ABCD是等腰梯形,AB∥CD,∠DAB=60°,F(xiàn)C⊥平面ABCD,AE⊥BD,CB=CD=CF。(Ⅰ)求證:BD⊥
2025-05-11 12:12
【摘要】高二數(shù)學(xué)課件:制作:余干二中章華鋒二面角和面面垂直二面角和面面垂直教學(xué)目標(biāo):掌握判定定理,并會應(yīng)用培養(yǎng)空間想象能力,推理能力教學(xué)難點:判定定理及其綜合應(yīng)用1、問題:一條直線可以把一個平面分成多少部分?每一部分都叫做半平面2部分2、觀察一下從一條直線出發(fā)的兩個半平面所組成的的圖形叫二面角.
2025-01-12 01:26
【摘要】 《二面角的一種求法》說課稿 一、教材簡析: 1.地位與作用: 本節(jié)是高二數(shù)學(xué)下冊第九章《直線、平面、簡單幾何體》中相關(guān)9·6二面角的求解問題。是在立體幾何知識學(xué)習(xí)完畢,學(xué)生已具有...
2024-12-03 00:45
【摘要】立體幾何專題之二面角問題北京大學(xué)光華管理學(xué)院何洋立體幾何高考情況簡述2022年2022年2022年文科理科文科理科文科理科選擇題222222填空題111110解答題111111二面角問題高考情況簡述?除2022年北京
2024-08-30 07:01