【摘要】一、作點在面上的射影(作垂線)1、已知矩形中,,,將矩形沿對角線把折起,使移到點,且在平面上的射影恰好在上.(Ⅰ)求證:;(Ⅱ)求證:平面平面;(Ⅲ)求二面角的余弦值.2、在如圖所示的幾何體中,四邊形ABCD是等腰梯形,AB∥CD,∠DAB=60°,F(xiàn)C⊥平面ABCD,AE⊥BD,CB=CD=CF。(Ⅰ)求證:BD⊥
2025-05-11 12:12
【摘要】文科立體幾何線面角二面角專題學(xué)校:___________姓名:___________班級:___________考號:___________一、解答題1.如圖,在三棱錐P?ABC中,AB=BC=22,PA=PB=PC=AC=4,O為AC的中點.(1)證明:PO⊥平面ABC;(2)若點M在棱BC上,且二面角M?PA?C為30°,求PC與平面PAM所成角的正
2024-08-05 16:28
【摘要】立體幾何綜合訓(xùn)練(45)二面角二面角問題因其需要充分運用立體幾何第一章的線線、線面、面面關(guān)系,具有綜合性強,靈活性大的特點,因此,一直成為高考、會考的熱點。求解二面角問題一般可分為直接法和間接法二大類。一、直接法直接法就是根據(jù)已知條件,首先作出二面角的平面角,再求平面角大小的方法。求作二面角平面角的方法主要有:lab①利用定義即在二面角-l-的
2024-11-05 17:11
【摘要】立體幾何專題之二面角問題北京大學(xué)光華管理學(xué)院何洋立體幾何高考情況簡述2022年2022年2022年文科理科文科理科文科理科選擇題222222填空題111110解答題111111二面角問題高考情況簡述?除2022年北京
2024-08-30 07:01
【摘要】βabABCD設(shè)異面直線a、b的夾角為θcosθ=??AB,CDcos||=AB·CD·AB||CD||θ=??AB,CD或θ=π-?
2025-07-17 22:58
【摘要】利用線面角和二面角本質(zhì)解題沈勤龍某天聽了一節(jié)高三某老師的試卷講評課,很有收獲。覺得應(yīng)該寫出來與各位分享,并希望各位不斷提醒自己,在學(xué)習(xí)數(shù)學(xué)的過程中,應(yīng)不斷思考,不斷追求本質(zhì)。首先,我們要認(rèn)識線面角和二面角的兩個本質(zhì)(不作展開,自行理解或證明):本質(zhì)1:一條斜線與已知平面中的任一條直線所成的角中,線面角最小。本質(zhì)2:對于一個銳二面角,在其中一個半平面中的任一條直線與另一個半平面
2025-05-11 12:45
【摘要】第九章直線、平面、簡單幾何體懷化鐵路第一中學(xué)二面角(4)——二面角習(xí)題課第九章直線、平面、簡單幾何體懷化鐵路第一中學(xué)一、朝花夕拾二、兩個平面垂直的判定定理三、兩個平面垂直的性質(zhì)定理一、兩個平面垂直的定義相交成直二面角的兩個平面,叫做互相垂直的平面CDB
2025-01-09 15:28
【摘要】立體幾何中的向量方法—求空間角?立體幾何這一考點在廣東高考試卷中占有很大比例,11年19分12年18分13年24分。這些題目也是我們?nèi)幦×η鬂M分的題目。主要考查三視圖問題,點線面位置關(guān)系問題,還有就是大題.大題主要有垂直、平行、角度、體積。對于角度問題,一直是一個難點。大體有兩種求法,一類是傳統(tǒng)方法,一做(找)二證三求,另一種方
2025-08-03 12:13
【摘要】毛洪清一、直線的方向向量定義直線L上的向量以及與向量共線的向量叫直線L的方向向量.?例:直線L過點P(-2,3,1),Q(1,0,-1),則直線L的一個方向向量為______ee(3,-3,-2)答案:L二、平面的法向量定義如果表示非零向量的有向線段所在
2025-01-15 17:26
【摘要】二面角仔細(xì)觀察慎重思考認(rèn)真解答開拓創(chuàng)新注意積累勇于探索知識再現(xiàn)什么是二面角?由兩個半平面圍成的幾何圖形ιβα敘述二面角平面角的形成過程ιPBAβα在平面α和平面β的交線ι上任取一點P在平面α內(nèi)
2024-12-21 16:40
【摘要】1、二面角及二面角的平面角的有關(guān)定義平面的一條直線把平面分為兩部分,其中的每一部分都叫做一個半平面。從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。(1)半平面(2)二面角lαlα這條直線叫做二面角的棱,每個半平面叫做二面角的面。αβBOAa
2025-01-12 23:31
【摘要】二面角從空間一直線出發(fā)的兩個半一、二面角的定義二、二面角的平面角角的平面角一個平面垂直于二面角的棱,并與兩半平面分別相交于射線PA、PB垂足為P,則∠APB叫做二面ABPγβαιαβι平面所組成的圖形叫做二面角
2025-01-09 15:15
【摘要】二面角(2)一、復(fù)習(xí)鞏固1.二面角的定義?2.什么是二面角的平面角?請看3.什么是直二面角?二、研究與討論1.二面角的平面角的頂點是二面角棱上的_____一點.2.二面角的平面角的兩邊分別在二面角的_______內(nèi).3.二面角的平面角的
2025-01-09 17:19
【摘要】二面角求法歸納18題,通常是立體幾何(12-14分),本題考查空間線面平行、線面垂直、面面垂直的判斷與證明,考查二面角的求法以及利用向量知識解決幾何問題的能力,同時考查空間想象能力、推理論證能力和運算能力。以下是求二面角的五種方法總結(jié),及題形歸納。定義法:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面,
2025-05-11 06:31