【摘要】用向量法求二面角例1:在三棱柱ABO—A1B1O1中,平面OBB1O1⊥平面OAB,∠O1OB=600,∠BOA=900,OB=OO1=2,AO=.求3(1)二面角O—AB—O1的大小AOBA1O1B1xyz42arccos例2:已知四棱錐P—ABC
2025-01-12 08:07
【摘要】08:29二面角08:29一、二面角及二面角的平面角平面的一條直線把平面分為兩部分,其中的每一部分都叫做一個半平面。1、半平面——αl二面角08:29從空間一直線出發(fā)的兩個半2、二面角的定義3、二面角的平面角角的平面角
2025-01-12 09:23
【摘要】空間兩個平面羅移豐??????二面角1打開的書一個平面內(nèi)的一條直線把這個平面分成兩個部分,其中的每一部分都叫做半平面。一條直線上的一個點(diǎn)把這條直線分成兩個部分,其中的每一部分都叫做射線。2l??AB?
2025-01-13 08:38
【摘要】平面與平面垂直的判定與性質(zhì)(習(xí)題課)例1:已知二面角,其大小為90°,,線段AB=2a,AB與成45°的角,與成30°的角,過點(diǎn)A、B作的垂線A
【摘要】利用線面角和二面角本質(zhì)解題沈勤龍某天聽了一節(jié)高三某老師的試卷講評課,很有收獲。覺得應(yīng)該寫出來與各位分享,并希望各位不斷提醒自己,在學(xué)習(xí)數(shù)學(xué)的過程中,應(yīng)不斷思考,不斷追求本質(zhì)。首先,我們要認(rèn)識線面角和二面角的兩個本質(zhì)(不作展開,自行理解或證明):本質(zhì)1:一條斜線與已知平面中的任一條直線所成的角中,線面角最小。本質(zhì)2:對于一個銳二面角,在其中一個半平面中的任一條直線與另一個半平面
2025-05-11 12:45
【摘要】直線與平面所成的角與二面角(二)-——二面角與平面和平面的垂直關(guān)系1二面角及二面角的平面角平面的一條直線把平面分為兩部分,其中的每一部分都叫做一個半平面。從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。(1)半平面——(2)二面角——llαl
2025-01-20 23:19
【摘要】第九章直線、平面、簡單幾何體懷化鐵路第一中學(xué)二面角(4)——二面角習(xí)題課第九章直線、平面、簡單幾何體懷化鐵路第一中學(xué)一、朝花夕拾二、兩個平面垂直的判定定理三、兩個平面垂直的性質(zhì)定理一、兩個平面垂直的定義相交成直二面角的兩個平面,叫做互相垂直的平面CDB
2025-01-09 15:28
【摘要】二面角仔細(xì)觀察慎重思考認(rèn)真解答開拓創(chuàng)新注意積累勇于探索知識再現(xiàn)什么是二面角?由兩個半平面圍成的幾何圖形ιβα敘述二面角平面角的形成過程ιPBAβα在平面α和平面β的交線ι上任取一點(diǎn)P在平面α內(nèi)
2024-12-21 16:40
2024-09-14 10:03
【摘要】第九章直線、平面、簡單幾何體第講(第一課時)考點(diǎn)搜索●直線和平面所成的角的概念與計(jì)算●二面角、二面角的平面角的概念,平面角大小的計(jì)算高考高考猜想1.利用幾何或向量方法求直線和平面所成的角、二面角的平面角.2.轉(zhuǎn)化角的條件,探求角的范圍.1.一個平面的斜線和它在這個平面內(nèi)的_
2025-07-13 21:38
【摘要】二面角(2)復(fù)習(xí)提問:lP??ABABP??ABO??lP①、定義法②、三垂線(逆)定理法③、垂面法CQ∠APBQCPA,?l作二面角的平面角的常用方法??AB
2024-09-11 17:44
【摘要】直線上的一點(diǎn)將直線分割成兩部分,每一部分都叫做射線.射線射線平面內(nèi)的一條直線,把這個平面分成兩部分,每一部分都叫做半平面。思考:平面上的一條直線將平面分割成兩部分,每一部分叫什么名稱?αl從一條直線出發(fā)的兩個半平面所組成的空間圖形稱為什么?在平面幾何中“角”是怎樣定義的?答:從平面內(nèi)一點(diǎn)出發(fā)的兩條
2024-09-15 00:06
【摘要】??????復(fù)習(xí)回顧"角"是怎樣定義的?從一點(diǎn)出發(fā)的兩條射線所組成的圖形叫做角。或:一條射線繞其端點(diǎn)旋轉(zhuǎn)而成的圖形叫做角。,"異面直線所成的角"是怎樣定義的?直線a、b是異面直線,經(jīng)過空間任意一點(diǎn)O,分別引直線a'//a,b'//b,我們把相
2024-09-15 18:18
【摘要】3種求二面角的幾何法二面角的度量問題是立幾中學(xué)生比較困難的一個問題,課本上是通過它的平面角來進(jìn)行度量的,關(guān)鍵在于充分利用平面角的定義。下面來介紹求二面角的大小的幾種方法:直二面角情況:一般是通過幾何求證的方法,主要依據(jù)是直線與平面垂直的判定定理。例1.如圖ABCD是矩形,AB=a,BC=b(ab),沿對角線AC把△ADC折起,使A
2025-08-07 01:46
【摘要】判定定理判定定理1、線線垂直線面垂直面面垂直定義性質(zhì)定理復(fù)習(xí)提問2、證明直二面角的方法:2)二面角的大小為9001)判定定理例1、已知∠
2024-09-02 08:32