【摘要】拉普拉斯變換、連續(xù)時間系統(tǒng)的S域分析基本要求通過本章的學(xué)習(xí),學(xué)生應(yīng)深刻理解拉普拉斯變換的定義、收斂域的概念:熟練掌握拉普拉斯變換的性質(zhì)、卷積定理的意義及它們的運用。能根據(jù)時域電路模型畫出S域等效電路模型,并求其沖激響應(yīng)、零輸入響應(yīng)、零狀態(tài)響應(yīng)和全響應(yīng)。能根據(jù)系統(tǒng)函數(shù)的零、極點分布情況分析、判斷系統(tǒng)的時域與頻域特性。理解全通網(wǎng)絡(luò)、最小相移網(wǎng)絡(luò)的概念以及拉普拉斯變換與傅里葉變換的關(guān)系。會
2025-08-04 16:42
【摘要】第十四章拉普拉斯變換拉普拉斯變換是一個數(shù)學(xué)工具,它可以將時域里的高階微分方程變換為復(fù)頻域里的代數(shù)方程,從而大大簡化求解過程。由于這個變換是唯一的,因而復(fù)頻域里的解也唯一地對應(yīng)著原時域里微分方程的解,通過反變換即可得到微分方程的解。這樣就為分析解決高階電路提供了一個簡便和實用的方法——運算法。因此,拉普拉斯變換涉及到正變換和
2025-03-03 18:35
【摘要】范文范例參考第7章拉普拉斯變換拉普拉斯(Laplace)變換是分析和求解常系數(shù)線性微分方程的一種簡便的方法,而且在自動控制系統(tǒng)的分析和綜合中也起著重要的作用.本章將扼要地介紹拉普拉斯變換(以下簡稱拉氏變換)的基本概念、主要性質(zhì)、逆變換以及它在解常系數(shù)線性微分方程中的應(yīng)用.在代數(shù)中,直接計算是很復(fù)雜的,而引用對數(shù)后,可先把上式變換為,然后通過查
2025-08-03 12:29
【摘要】第8章拉普拉斯變換本章學(xué)習(xí)目標1、理解拉普拉變換的概念與性質(zhì);2、掌握拉普拉變換的逆變換;3、了解拉普拉斯變換的應(yīng)用。第8章拉普拉斯變換拉普拉斯變換的概念與性質(zhì)在所確定的某一域內(nèi)收斂,則由此積分所確定的函數(shù)可寫為定義設(shè)函數(shù)當(dāng)有定義,
2024-11-10 15:43
【摘要】1§拉普拉斯逆變換2主要內(nèi)容由象函數(shù)求原函數(shù)的方法部分分式法求拉氏逆變換兩種特殊情況3一.由象函數(shù)求原函數(shù)的方法(1)部分分式法()(2)利用留數(shù)定理——圍線積分法4二.F(s)的一般形式01110111)()()(bsbsbsbas
2024-12-21 21:57
【摘要】§拉普拉斯逆變換直接利用定義式求反變換-復(fù)變函數(shù)積分,比較困難。通常的方法:(1)查表(2)利用性質(zhì)(3)部分分式展開-結(jié)合若象函數(shù)F(s)是s的有理分式,可寫為01110111.......)(asasasbsbsbsbsFnnnmmm
2024-09-02 17:10
【摘要】第七章拉普拉斯變換第七章拉普拉斯變換第七章拉普拉斯變換?1、拉氏變換的基本概念?2、拉氏變換的性質(zhì)?3、拉氏變換的逆運算?4、拉氏變換應(yīng)用舉例第七章拉普拉斯變換稱(7-1)式為函數(shù)的拉氏變換式,用記號L[f(t)]=F(P)表示.函
2024-09-15 07:35
【摘要】上海大學(xué)機電工程與自動化學(xué)院工程控制原理2.數(shù)學(xué)模型與傳遞函數(shù)拉普拉斯變換主講:周曉君辦公室:機械副樓209-2室電子郵件:辦公電話:56331523上海大學(xué)機電工程與自動化學(xué)院拉普拉斯變換系統(tǒng)的數(shù)學(xué)
2024-09-04 15:59
【摘要】復(fù)變函數(shù)與積分變換ComplexAnalysisandIntegralTransform復(fù)變函數(shù)與積分變換Laplace逆變換前面主要討論了由已知函數(shù)f(t)求它的象函數(shù)F(s),但在實際應(yīng)用中常會碰到與此相反的問題,即已知象函數(shù)F(s)求它的象原函數(shù)f(t).由拉氏變換的概念可知,函數(shù)f(t)的拉氏
2024-11-01 01:29
【摘要】1F[]=L—1[]第8章拉普拉斯變換§拉氏變換的概念設(shè)()ft在[0,)??上有定義,()ftdt0???如果積分且s是一個ste?在包含s則此積分確定的函數(shù)()Fs()ftdt0????ste?稱為()ft的Laplace
2024-09-11 17:46
【摘要】復(fù)變函數(shù)與積分變換ComplexAnalysisandIntegralTransform復(fù)變函數(shù)與積分變換Laplace變換的應(yīng)用對一個系統(tǒng)進行分析和研究,首先要知道該系統(tǒng)的數(shù)學(xué)模型,也就是要建立該系統(tǒng)特性的數(shù)學(xué)表達式.所謂線性系統(tǒng),在許多場合,它的數(shù)學(xué)模型可以用一個線性微分方程來描述,或者說是滿足疊加原理的一類
2024-11-01 01:30
【摘要】復(fù)變函數(shù)與積分變換ComplexAnalysisandIntegralTransform復(fù)變函數(shù)與積分變換本講介紹拉氏變換的基本性質(zhì),它們在拉氏變換的實際應(yīng)用中都是很有用的.為方便起見,假定在這些性質(zhì)中,凡是要求拉氏變換的函數(shù)都滿足拉氏變換存在定理的條件,并且把這些函數(shù)的增長指數(shù)都統(tǒng)一地取為c,在證明性質(zhì)時不再重述這些條
2024-10-12 08:54
【摘要】1=L—1[]§拉氏逆變換()Fs已知()ft的拉氏變換或者象函數(shù)為()ft求()Fs的拉氏逆變換或者象原函數(shù)()Fs=L[]()ft方法一記住幾個常用的拉氏變換L[]11s?L[]kks?L[]taeL[]at
2024-09-11 17:45
【摘要】第九章拉普拉斯變換TheLaplaceTransform?掌握拉氏變換定義及其基本性質(zhì);?牢記常用典型信號的拉氏變換;?掌握運用拉氏變換分析LTI系統(tǒng)的方法;?掌握系統(tǒng)的典型表示方法:H(s)、h(t)、微分方程、模擬框圖、信號流圖、零極點+收斂域圖,以及它們之間的轉(zhuǎn)換。?掌握采用單邊拉氏變換對初始狀態(tài)非零系統(tǒng)的分析方
2024-09-21 12:05
【摘要】第八章拉普拉斯變換拉普拉斯變換理論(又稱為運算微積分,或稱為算子微積分)是在19世紀末發(fā)展起來的.首先是英國工程師亥維賽德()發(fā)明了用運算法解決當(dāng)時電工計算中出現(xiàn)的一些問題,但是缺乏嚴密的數(shù)學(xué)論證.后來由法國數(shù)學(xué)家拉普拉斯()給出了嚴密的數(shù)學(xué)定義,稱之為拉普拉斯變換方法.拉普拉斯(Laplace)變
2024-08-30 22:39