【摘要】數(shù)列知識(shí)點(diǎn)及方法歸納1.等差數(shù)列的定義與性質(zhì)定義:(為常數(shù)),等差中項(xiàng):成等差數(shù)列前項(xiàng)和性質(zhì):是等差數(shù)列(1)若,則(2)數(shù)列仍為等差數(shù)列,仍為等差數(shù)列,公差為;(3)若三個(gè)成等差數(shù)列,可設(shè)為(4)若是等差數(shù)列,且前項(xiàng)和分別為,則(5)為等差數(shù)列(為常數(shù),是關(guān)于的常數(shù)項(xiàng)為0的二次函數(shù))的最值可求二次函數(shù)的最值;或者求出中的正、負(fù)分界項(xiàng),即:當(dāng),解
2024-09-15 09:35
【摘要】yxo翟夫連2022年3月18日二次函數(shù)解析式有哪幾種表達(dá)式?1一般式:y=ax2+bx+c3頂點(diǎn)式:y=a(x-h)2+k2交點(diǎn)式:y=a(x-x1)(x-x2)解:設(shè)所求的二次函數(shù)為y=a(x+1)2-3由條件得:已知拋物線的頂點(diǎn)為(-1,-3),與軸交點(diǎn)為(0,-5
2024-09-26 01:01
【摘要】求遞推數(shù)列通項(xiàng)公式的常用方法歸納目錄一、概述183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。
2024-12-22 20:27
【摘要】求數(shù)列通項(xiàng)公式的十種方法一、公式法例1已知數(shù)列滿足,,求數(shù)列的通項(xiàng)公式。解:兩邊除以,得,則,故數(shù)列是以為首項(xiàng),以為公差的等差數(shù)列,由等差數(shù)列的通項(xiàng)公式,得,所以數(shù)列的通項(xiàng)公式為。評(píng)注:本題解題的關(guān)鍵是把遞推關(guān)系式轉(zhuǎn)化為,說明數(shù)列是等差數(shù)列,再直接利用等差數(shù)列的通項(xiàng)公式求出,進(jìn)而求出數(shù)列的通項(xiàng)公式。二、利用例2.若和分別表示數(shù)列和的前項(xiàng)和,對(duì)任意正整數(shù),.求數(shù)列的
2024-10-03 06:16
【摘要】yxo翟夫連2020年3月18日二次函數(shù)解析式有哪幾種表達(dá)式?1一般式:y=ax2+bx+c3頂點(diǎn)式:y=a(x-h)2+k2交點(diǎn)式:y=a(x-x1)(x-x2)解:設(shè)所求的二次函數(shù)為y=a(x+1)2-3由條件得:已知拋物線的頂點(diǎn)為(-1,-3),與軸交點(diǎn)為(0,-5
2025-01-13 03:11
【摘要】數(shù)列的通項(xiàng)公式與求和練習(xí)1練習(xí)2練習(xí)3練習(xí)4練習(xí)5練習(xí)6練習(xí)7練習(xí)8等比數(shù)列的前項(xiàng)和Sn=2n-1,則練習(xí)9
2025-08-06 23:52
【摘要】求數(shù)列通項(xiàng)公式的十種方法一、公式法例1已知數(shù)列滿足,,求數(shù)列的通項(xiàng)公式。解:兩邊除以,得,則,故數(shù)列是以為首項(xiàng),以為公差的等差數(shù)列,由等差數(shù)列的通項(xiàng)公式,得,所以數(shù)列的通項(xiàng)公式為。評(píng)注:本題解題的關(guān)鍵是把遞推關(guān)系式轉(zhuǎn)化為,說明數(shù)列是等差數(shù)列,再直接利用等差數(shù)列的通項(xiàng)公式求出,進(jìn)而求出數(shù)列的通項(xiàng)公式。二、累加法例2已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。解:由得則
【摘要】待定系數(shù)法分解因式(附答案)待定系數(shù)法作為最常用的解題方法,可以運(yùn)用于因式分解、確定方程系數(shù)、解決應(yīng)用問題等各種場(chǎng)合。其指導(dǎo)作用貫穿于初中、高中甚至于大學(xué)的許多課程之中,認(rèn)真學(xué)好并掌握待定系數(shù)法,必將大有裨益。內(nèi)容綜述 將一個(gè)多項(xiàng)式表示成另一種含有待定系數(shù)的新的形式,這樣就得到一個(gè)恒等式。然后根據(jù)恒等式的性質(zhì)得出系數(shù)應(yīng)滿足的方程或方程組,其后通過解方程或方程組便可求出待定的系數(shù)
2025-08-12 16:39
【摘要】待定系數(shù)法分解因式待定系數(shù)法作為最常用的解題方法,可以運(yùn)用于因式分解、確定方程系數(shù)、解決應(yīng)用問題等各種場(chǎng)合。其指導(dǎo)作用貫穿于初中、高中甚至于大學(xué)的許多課程之中,認(rèn)真學(xué)好并掌握待定系數(shù)法,必將大有裨益?! ⒁粋€(gè)多項(xiàng)式表示成另一種含有待定系數(shù)的新的形式,這樣就得到一個(gè)恒等式。然后根據(jù)恒等式的性質(zhì)得出系數(shù)應(yīng)滿足的方程或方程組,其后通過解方程或方程組便可求出待定的系數(shù),或找出某些系數(shù)所滿足
2025-08-12 16:40
【摘要】求數(shù)列通項(xiàng)貴港市高級(jí)中學(xué)數(shù)學(xué)組曾偉君na一.基礎(chǔ)知識(shí)梳理求數(shù)列通項(xiàng),大體可分為以下三個(gè)模塊:1.利用公式:,;求通項(xiàng).nana1(1)naa
2025-01-13 00:25
【摘要】數(shù)列的通項(xiàng)公式是數(shù)列的核心之一,它如同函數(shù)的解析式一樣,有解析式便可研究其性質(zhì)等,而有了數(shù)列的通項(xiàng)公式,便可以研究數(shù)列的性質(zhì)及前n項(xiàng)和等,所以求數(shù)列的通項(xiàng)公式是研究數(shù)列的重中之重,現(xiàn)將求數(shù)列的通項(xiàng)公式幾種常見類型及方法總結(jié)如下:求數(shù)列的通項(xiàng)公式幾種常見類型及方法德興一中汪利群一、已知數(shù)列類型,利用公式法求
2025-01-21 18:02
【摘要】海豚教育個(gè)性化簡案學(xué)生姓名:年級(jí):科目:授課日期:月日上課時(shí)間:時(shí)分------時(shí)分合計(jì):小時(shí)教學(xué)目標(biāo)1.復(fù)習(xí)等差數(shù)列和等比數(shù)列的基本定義;2.學(xué)會(huì)通過作差法
2024-09-14 10:15
【摘要】專題訓(xùn)練求二次函數(shù)的解析式一、已知三點(diǎn)求解析式=ax2+bx+c經(jīng)過(-1,-22),(0,-8),(2,8)三點(diǎn),求它的開口方向、對(duì)稱軸和頂點(diǎn).(0,0),(-1,-1),(1,9)三點(diǎn).求這個(gè)二次函數(shù)的解析式.3.已知二次函數(shù)的圖象經(jīng)過點(diǎn)(-1,-6),(1,-2)和(2,3),求這個(gè)二次函數(shù)的解析式,并求它的開口方向、對(duì)稱軸
2025-08-02 23:56
【摘要】待定系數(shù)法要確定變量間的函數(shù)關(guān)系,設(shè)出某些未知系數(shù),然后根據(jù)所給條件來確定這些未知系數(shù)的方法叫待定系數(shù)法,其理論依據(jù)是多項(xiàng)式恒等,也就是利用了多項(xiàng)式f(x)g(x)的充要條件是:對(duì)于一個(gè)任意的a值,都有f(a)g(a);或者兩個(gè)多項(xiàng)式各同類項(xiàng)的系數(shù)對(duì)應(yīng)相等。待定系數(shù)法解題的關(guān)鍵是依據(jù)已知,正確列出等式或方程。使用待定系數(shù)法,就是把具有某種確定形式的數(shù)學(xué)問題,通過引入一些待定的系數(shù),轉(zhuǎn)化為
2025-03-03 11:11
【摘要】精品資源待定系數(shù)法在不等式中的應(yīng)用在解(證)不等式問題時(shí),最常用的解題技巧是調(diào)整系數(shù)、拆項(xiàng)、補(bǔ)項(xiàng)。但調(diào)整系數(shù)、拆項(xiàng)、補(bǔ)項(xiàng)時(shí),既要考慮不等式的結(jié)構(gòu),又要符合相關(guān)要求,這些就需要待定系數(shù)法兼顧幾方面的要求。下面舉例說明。例1已知函數(shù)y=的最大值為7,最小值為-1,求此函數(shù)的表達(dá)式.分析:求函數(shù)的表達(dá)式,實(shí)際上就是確定系數(shù)m、n
2025-08-12 16:51