【摘要】方法,并能根據(jù)遞推公式求出滿足條件的項.法.1,2,2,3,3,3,4,4,4,4,5100A.14B.12C.131.(D2010.
2025-03-07 16:24
【摘要】求數(shù)列通項公式的十種方法一、公式法例1已知數(shù)列滿足,,求數(shù)列的通項公式。解:兩邊除以,得,則,故數(shù)列是以為首項,以為公差的等差數(shù)列,由等差數(shù)列的通項公式,得,所以數(shù)列的通項公式為。評注:本題解題的關(guān)鍵是把遞推關(guān)系式轉(zhuǎn)化為,說明數(shù)列是等差數(shù)列,再直接利用等差數(shù)列的通項公式求出,進(jìn)而求出數(shù)列的通項公式。二、累加法例2已知數(shù)列滿足,求數(shù)列的通項公式。解:由得則
2024-10-03 06:16
【摘要】......待定系數(shù)法求數(shù)列通項公式本文例題的深度層層深入,前面的類型是后面的基礎(chǔ),特別是第一種類型,是學(xué)習(xí)其他幾種類型的充分依據(jù),其他的類型最終都會轉(zhuǎn)變?yōu)榈谝环N類型之后
2024-08-05 16:33
【摘要】遞推數(shù)列通項公式之題根研究遞推數(shù)列通項公式之的題根研究055350河北隆堯一中焦景會電話13085848802[題根]數(shù)列滿足,,求通項公式。[分析]此為型遞推數(shù)列,構(gòu)造新數(shù)列,轉(zhuǎn)化成等比數(shù)列求解。[解答]在兩邊加1,得,則數(shù)列是首項為2,公比為2的等比數(shù)列,得,即為所求。[規(guī)律小結(jié)]型遞推數(shù)列,當(dāng)p=1時,數(shù)列為等
2024-07-18 22:59
【摘要】數(shù)列通項公式的求法集錦一、觀察法例1寫出數(shù)列的一個通項公式,使它的前5項分別是下列各數(shù)(1)3,5,9,17,33(2)-1/2,1/2,-3/8,1/4,-5/32(3)2,22,222,2222,22222注:在平時學(xué)習(xí)中要牢記常見的一些數(shù)列通項公式,如n,1/n,2n,2n+1,n!,,n(n+1)等,其他數(shù)列往往由這些基本數(shù)列和其他常數(shù)進(jìn)行四則運(yùn)
2025-05-20 01:08
【摘要】高一數(shù)學(xué)必修五第二章《數(shù)列》數(shù)列求和復(fù)習(xí)鞏固;;;;;:一個數(shù)列的前n項和中,可兩兩結(jié)合求解,則稱之為并項求和,若通項形如an=(-1)nf(n)的擺動數(shù)列求和,可用此法。求數(shù)列Sn=12-22+32-42+…+(-1)n-
2025-02-24 11:54
【摘要】......用待定系數(shù)法求遞推數(shù)列通項公式初探摘要:本文通過用待定系數(shù)法分析求解9個遞推數(shù)列的例題,得出適用待定系數(shù)法求其通項公式的七種類型的遞
2024-08-05 16:48
【摘要】由遞推公式求通項公式的常用方法由數(shù)列的遞推公式求通項公式是高中數(shù)學(xué)的重點(diǎn)問題,也是難點(diǎn)問題,它是歷年高考命題的熱點(diǎn)題。對于遞推公式確定的數(shù)列的求解,通??梢酝ㄟ^遞推公式的變換,轉(zhuǎn)化為等差數(shù)列或等比數(shù)列問題,有時也用到一些特殊的轉(zhuǎn)化方法與特殊數(shù)列。方法一:累加法形如an+1-an=f(n)(n=2,3,4,…),且f(1)+f(2)+…+f(n-1)可求,則用累加法求an。有時若不能直
2024-07-29 13:57
【摘要】數(shù)列的通項公式是數(shù)列的核心之一,它如同函數(shù)的解析式一樣,有解析式便可研究其性質(zhì)等,而有了數(shù)列的通項公式,便可以研究數(shù)列的性質(zhì)及前n項和等,所以求數(shù)列的通項公式是研究數(shù)列的重中之重,現(xiàn)將求數(shù)列的通項公式幾種常見類型及方法總結(jié)如下:求數(shù)列的通項公式幾種常見類型及方法德興一中汪利群一、已知數(shù)列類型,利用公式法求
2025-01-21 18:02
【摘要】高二數(shù)學(xué)導(dǎo)學(xué)案GRSX5-33常見遞推數(shù)列通項公式的求法高二數(shù)學(xué)備課組編一、學(xué)習(xí)目標(biāo):1.運(yùn)用累加、累乘、待定系數(shù)等方法求數(shù)列的通項公式。2.培養(yǎng)學(xué)生養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣;二、重點(diǎn)
2025-06-04 00:58
【摘要】數(shù)列的通項公式與求和練習(xí)1練習(xí)2練習(xí)3練習(xí)4練習(xí)5練習(xí)6練習(xí)7練習(xí)8等比數(shù)列的前項和Sn=2n-1,則練習(xí)9
2024-07-30 23:52
【摘要】課時作業(yè)5 數(shù)列的遞推公式(選學(xué))時間:45分鐘 滿分:100分課堂訓(xùn)練1.在數(shù)列{an}中,a1=,an=(-1)n·2an-1(n≥2),則a5=( )A.- B.C.- D.【答案】 B【解析】 由an=(-1)n·2an-1知a2=,a3=-2a2=-,a4=2a3=-,a5=-2a4=.2.某數(shù)列第一項為1,
2025-05-12 02:52
【摘要】......求遞推數(shù)列通項公式的十種策略例析遞推數(shù)列的題型多樣,求遞推數(shù)列的通項公式的方法也非常靈活,往往可以通過適當(dāng)?shù)牟呗詫栴}化歸為等差數(shù)列或等比數(shù)列問題加以解決,亦可采用不完全歸納法的方法,由特殊情形推導(dǎo)出一般情形,進(jìn)而用數(shù)學(xué)歸納法加以證明,因而求遞推數(shù)列的通項公式問題成為了高考命題中頗受青睞的考查內(nèi)容。筆者試給出求遞推數(shù)列通項
2024-08-07 04:51
【摘要】......1、公式法:等差數(shù)列、等比數(shù)列的通項公式的求法:若在已知數(shù)列中存在:(常數(shù))或的關(guān)系,可采用求等差、等比數(shù)列的通項公式的求法,確定數(shù)列的通項。2、非等差、等比數(shù)列的通項公式的求法。(1)觀察法:通過觀察數(shù)列中的
2024-08-05 02:18
【摘要】1求數(shù)列通項公式的方法一、知識復(fù)習(xí)1、通項公式:2、等差數(shù)列的通項公式:推導(dǎo)方法:3、等比數(shù)列的通項公式:推導(dǎo)方法:二、求數(shù)列的通項公式方法總結(jié)(一)觀察歸納法:通過觀察尋求na與n的關(guān)系(1)5,55,555,5555,(2)149161,2,
2024-12-24 07:00