【摘要】習(xí)題一一、單項選擇題.1.微分方程的階數(shù)是().A.1B.2C.3D.52.克萊羅方程的一般形式是().A.B.C.D.3.下列方程中為全微分方程的是().A.B.C.
2025-05-12 01:12
【摘要】4.給定一階微分方程,(1).求出它的通解;(2).求通過點的特解;(3).求出與直線相切的解;(4).求出滿足條件的解;(5).繪出(2),(3),(4)中的解得圖形。解:(1).通解顯然為;(2).把代入得,故通過點的特解為;(3).因為所求直線與直線相切,所以只有唯一解,即只有唯一實根,從而,故與直線相切的解是;(4).把代入即得
2025-08-11 15:00
【摘要】2.求解下列常系數(shù)線性微分方程:(1)解:特征方程:特征根:基本解組:所求通解:(2)解:特征方程:特征根:基本解組:所求通解:(3)解:特征方程:特征根:基本解組:所求通解:(4)解:特征方程:特征根:基本解組:所求通解:(5)(屬于類型Ⅰ)解:齊次方程:特征方程:
2025-08-13 20:31
【摘要】第七章常微分方程初步第一節(jié)常微分方程引例1(曲線方程):已知曲線上任意一點M(x,y)處切線的斜率等于該點橫坐標(biāo)4倍,且過(-1,3)點,求此曲線方程解:設(shè)曲線方程為,則曲線上任意一點M(x,y)處切線的斜率為根據(jù)題意有這是一個含有一階導(dǎo)數(shù)的模型引例2(運動方程):一質(zhì)量為m的物體,從高空自由下落,設(shè)此物體的運動只受重力的影響。試確定該物體速度隨時間的變化規(guī)律
2024-11-05 15:15
【摘要】第九章微分方程一、教學(xué)目標(biāo)及基本要求(1)了解微分方程及其解、通解、初始條件和特解的概念。(2)掌握變量可分離的方程和一階線性方程的解法,會解齊次方程。(3)會用降階法解下列方程:。(4)理解二階線性微分方程解的性質(zhì)以及解的結(jié)構(gòu)定理。(5)掌握二階常系數(shù)齊次線性微分方程的解法,并會解某些高于二階的常系數(shù)齊次線性微分方程。(6)會求自由項多項式、指數(shù)函數(shù)、
2025-08-11 15:07
【摘要】一單項選擇題(每小題2分,共40分)1.下列四個微分方程中,為三階方程的有()個.(1)(2)(3)(4)A.1B.2C.3D.42.為確定一個一般的n階微分方程=0的一個特解,通常應(yīng)給出的初始條件是().A.當(dāng)時,B.當(dāng)時,C.當(dāng)時,D.當(dāng)時,3.微分方程的一個解是().
【摘要】常微分方程自學(xué)習(xí)題及答案一填空題:1一階微分方程的通解的圖像是維空間上的一族曲線.2二階線性齊次微分方程的兩個解y1(x);y2(x)為方程的基本解組充分必要條件是________.3方程的基本解組是_________.4一個不可延展解的存在區(qū)間一定是___________區(qū)間.5方程的常數(shù)解是________.6
【摘要】微分方程習(xí)題§1基本概念1.驗證下列各題所給出的隱函數(shù)是微分方程的解.(1)(2)2..已知曲線族,求它相應(yīng)的微分方程(其中均為常數(shù))(一般方法:對曲線簇方程求導(dǎo),然后消去常數(shù),方程中常數(shù)個數(shù)決定求導(dǎo)次
2025-08-11 23:00
【摘要】習(xí)題4—11.求解下列微分方程1)解利用微分法得當(dāng)時,得從而可得原方程的以P為參數(shù)的參數(shù)形式通解或消參數(shù)P,得通解當(dāng)時,則消去P,得特解2);解利用微分法得 當(dāng)時,得從而可得原方程以p為參數(shù)的參數(shù)形式通解:或消p得通解當(dāng)時,消去p得特解3)解利用微分法,得兩
2025-08-05 08:29
【摘要】微分方程習(xí)題§1基本概念1.驗證下列各題所給出的隱函數(shù)是微分方程的解.(1)yxyyxCyxyx???????2)2(,22(2)???????y0222t-)(
2025-02-26 07:06
【摘要】江蘇師范大學(xué)數(shù)學(xué)教育專業(yè)《常微分方程》練習(xí)測試題庫參考答案一、判斷說明題1、在線性齊次方程通解公式中C是任意常數(shù)而在常數(shù)變易法中C(x)是x的可微函數(shù)。將任意常數(shù)C變成可微函數(shù)C(x),期望它解決線性非齊次方程求解問題,這一方法成功了,稱為常數(shù)變易法。2、因p(x)連續(xù),y(x)=yexp(-)在p(x)連續(xù)的區(qū)間有意義,而exp(-)>0。如果y=0,推出y(x)=0,如果y
【摘要】一、填空題(每空2分,共16分)。1、方程滿足解的存在唯一性定理條件的區(qū)域是 xoy平面 ?。?.方程組的任何一個解的圖象是n+1維空間中的一條積分曲線.3.連續(xù)是保證方程初值唯一的充分條件.4.方程組的奇點的類型是中心5.方程的通解是6.變量可分離方程的積分因子是7.二階線性齊次微分方程的兩個解
【摘要】1常微分方程模擬試題一、填空題(每小題3分,本題共15分)1.一階微分方程的通解的圖像是2維空間上的一族曲線.2.二階線性齊次微分方程的兩個解)(),(21xyxy為方程的基本解組充分必要條件是.3.方程02??????yyy的基本解組是
2025-08-07 21:19
【摘要】常微分方程學(xué)習(xí)輔導(dǎo)(一)初等積分法微分方程的古典內(nèi)容主要是求方程的解,用積分的方法求常微分方程的解,叫做初等積分法,而可用積分法求解的方程叫做可積類型。初等積分法一直被認(rèn)為是常微分方程中非常有用的基本解題方法之一,也是初學(xué)者必須接受的最基本訓(xùn)練之一。在本章學(xué)習(xí)過程中,讀者首先要學(xué)會準(zhǔn)確判斷方程的可積類型,然后要熟練掌握針對不同可積類型的5種解法,最后在學(xué)習(xí)
【摘要】上頁下頁返回結(jié)束2022/3/131第一節(jié)微分方程的基本概念一、問題的提出二、微分方程的定義三、主要問題—求方程的解四、小結(jié)思考題第五章常微分方程上頁下頁返回結(jié)束2022/3/132例1一曲線通過點(1,2),
2025-04-10 12:49