【摘要】極坐標(biāo)與參數(shù)方程綜合運(yùn)用題型(一)【題型分析】題型一圓上的點(diǎn)到直線距離的最值【例1】已知曲線C1的參數(shù)方程為曲線C2的極坐標(biāo)方程為ρ=2cos(θ﹣),以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸正半軸建立平面直角坐標(biāo)系.(1)求曲線C2的直角坐標(biāo)方程;(2)求曲線C2上的動(dòng)點(diǎn)M到直線C1的距離的最大值.解:(Ⅰ)即ρ2=2(ρcosθ+ρsinθ),∴x2+y2﹣2x﹣2y=0
2025-05-12 04:37
【摘要】極坐標(biāo)參數(shù)方程經(jīng)典例題
【摘要】極坐標(biāo)與參數(shù)方程習(xí)題一、選擇題()A、(t為參數(shù))B、(t為參數(shù))C、(t為參數(shù))D、(t為參數(shù)),y滿足,,則() A.0 B.1 C.-2 D.8,下列所給出的不能表示點(diǎn)的坐標(biāo)的是()A、 B、 C、 D、,下列各點(diǎn)與點(diǎn)P(ρ,θ)(θ≠
2025-05-12 04:36
【摘要】第一講極坐標(biāo)與直角坐標(biāo)的簡(jiǎn)單互換知識(shí)運(yùn)用1平面直角坐標(biāo)系中的伸縮變換類型一根據(jù)變換求出變化前或后的點(diǎn)或曲線方程【例1】(1).在同一平面直角坐標(biāo)系中,已知伸縮變換φ:求點(diǎn)經(jīng)過(guò)φ變換所得的點(diǎn)A′的坐標(biāo).(2)(2015秋?南關(guān)區(qū)校級(jí)月考)曲線x2+y2=1經(jīng)過(guò)φ:變換后,得到的新曲線的方程為 .(3)(2015秋?花垣縣校級(jí)期中)曲線C經(jīng)過(guò)伸縮變換后,對(duì)應(yīng)曲線的方
2025-08-10 16:15
【摘要】極坐標(biāo)與參數(shù)方程專題1、把下列參數(shù)方程化為普通方程,并說(shuō)明它們各表示什么曲線:⑴(為參數(shù));⑵(為參數(shù))2、求圓心為C,半徑為3的圓的極坐標(biāo)方程。3、已知直線l經(jīng)過(guò)點(diǎn)P(1,1),傾斜角,(1)寫出直線l的參數(shù)方程。(2)設(shè)l與圓相交與兩點(diǎn)A、B,求點(diǎn)P到A、B兩點(diǎn)的距離之積。4、求橢圓。5、已知x、y滿足,求的最值。6、已知橢圓上兩個(gè)相鄰頂點(diǎn)為A、C,
【摘要】極坐標(biāo)與參數(shù)方程【教學(xué)目標(biāo)】1、知識(shí)目標(biāo):(1)掌握極坐標(biāo)的意義,會(huì)把極坐標(biāo)轉(zhuǎn)化一般方程(2)掌握參數(shù)方程與一般方程的轉(zhuǎn)化2、能力目標(biāo):通過(guò)對(duì)公式的應(yīng)用,提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力,多方面考慮事物,培養(yǎng)他們的創(chuàng)新精神和思維嚴(yán)謹(jǐn)性.3、情感目標(biāo):培養(yǎng)學(xué)生數(shù)形結(jié)合是思想方法.【教學(xué)重點(diǎn)】1、極坐標(biāo)的與一般坐標(biāo)的轉(zhuǎn)化
2025-06-04 03:42
【摘要】極坐標(biāo)系和常見(jiàn)曲線及參數(shù)方程習(xí)題極坐標(biāo)系:26在平面內(nèi)取一個(gè)定點(diǎn)O,叫極點(diǎn),引一條射線Ox,叫做極軸,再選定一個(gè)長(zhǎng)度單位和角度的正方向(通常取逆時(shí)針?lè)较颍?。?duì)于平面內(nèi)任何一點(diǎn)M,用ρ表示線段OM的長(zhǎng)度,θ表示從Ox到OM的角度,ρ叫做點(diǎn)M的極徑,θ叫做點(diǎn)M的極角,有序數(shù)對(duì)(ρ,θ)就叫點(diǎn)M的極坐標(biāo),這樣建立的坐標(biāo)系叫做極坐標(biāo)系。在極坐標(biāo)系中表示點(diǎn)
【摘要】高中數(shù)學(xué)極坐標(biāo)與參數(shù)方程知識(shí)點(diǎn)匯編及題型匯總【知識(shí)匯編】參數(shù)方程:直線參數(shù)方程:為直線上的定點(diǎn),為直線上任一點(diǎn)到定點(diǎn)的數(shù)量;圓錐曲線參數(shù)方程:圓的參數(shù)方程:(a,b)為圓心,r為半徑;橢圓的參數(shù)方程是;雙曲線的參數(shù)方程是;拋物線的參數(shù)方程是極坐標(biāo)與直角坐標(biāo)互化公式:若以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立坐標(biāo)系,點(diǎn)P的極坐標(biāo)為,直角坐標(biāo)為,則,,,
2025-05-25 22:31
【摘要】極坐標(biāo)與參數(shù)方程高考常見(jiàn)題型及解題策略【考綱要求】(1)坐標(biāo)系①了解坐標(biāo)系的作用,了解在平面直角坐標(biāo)系伸縮變換作用下平面圖形的變化情況。②了解極坐標(biāo)的基本概念,會(huì)在極坐標(biāo)系中用極坐標(biāo)刻畫(huà)點(diǎn)的位置,能進(jìn)行極坐標(biāo)和直角坐標(biāo)的互化。表示點(diǎn)的位置,理解在極坐標(biāo)系和平面直角坐標(biāo)系中表示點(diǎn)的位置的區(qū)別,能進(jìn)行極坐標(biāo)和直角坐標(biāo)的互化。③能在極坐標(biāo)系中給出簡(jiǎn)單圖形表示的極坐標(biāo)方程。
2025-06-04 03:20
【摘要】教學(xué)內(nèi)容【知識(shí)結(jié)構(gòu)】知識(shí)點(diǎn)一:極坐標(biāo)1.極坐標(biāo)系 平面內(nèi)的一條規(guī)定有單位長(zhǎng)度的射線,為極點(diǎn),為極軸,選定一個(gè)長(zhǎng)度單位和角的正方向(通常取逆時(shí)針?lè)较颍?,這就構(gòu)成了極坐標(biāo)系。 2.極坐標(biāo)系內(nèi)一點(diǎn)的極坐標(biāo) 平面上一點(diǎn)到極點(diǎn)的距離稱為極徑,與軸的夾角稱為極角,有序?qū)崝?shù)對(duì) 就叫做點(diǎn)的極坐標(biāo)。 3.極坐標(biāo)與直角坐標(biāo)的互化 當(dāng)
【摘要】極坐標(biāo)與參數(shù)方程基本知識(shí)點(diǎn)一、極坐標(biāo)知識(shí)點(diǎn)1.伸縮變換:設(shè)點(diǎn)是平面直角坐標(biāo)系中的任意一點(diǎn),在變換的作用下,點(diǎn)對(duì)應(yīng)到點(diǎn),稱為平面直角坐標(biāo)系中的坐標(biāo)伸縮變換,簡(jiǎn)稱伸縮變換。:在平面內(nèi)取一個(gè)定點(diǎn)O,從O引一條射線Ox,選定一個(gè)單位長(zhǎng)度以及計(jì)算角度的正方向(通常取逆時(shí)針?lè)较驗(yàn)檎较?,這樣就建立了一個(gè)極坐標(biāo)系,O點(diǎn)叫做極點(diǎn),射線Ox叫做極軸.①極點(diǎn);②極軸;③長(zhǎng)度單位;④角度單位和它
2025-08-10 16:07
【摘要】1.平面直角坐標(biāo)系中的坐標(biāo)伸縮變換設(shè)點(diǎn)P(x,y)是平面直角坐標(biāo)系中的任意一點(diǎn),在變換的作用下,點(diǎn)P(x,y)對(duì)應(yīng)到點(diǎn),稱為平面直角坐標(biāo)系中的坐標(biāo)伸縮變換,簡(jiǎn)稱伸縮變換.(1)極坐標(biāo)系如圖所示,在平面內(nèi)取一個(gè)定點(diǎn),叫做極點(diǎn),自極點(diǎn)引一條射線,叫做極軸;再選定一個(gè)長(zhǎng)度單位,一個(gè)角度單位(通常取弧度)及其正方向(通常取
2024-12-21 16:03
【摘要】2016學(xué)年度極坐標(biāo)與參數(shù)方程專項(xiàng)練習(xí)題號(hào)一二三總分得分注意事項(xiàng):1.答題前填寫好自己的姓名、班級(jí)、考號(hào)等信息2.請(qǐng)將答案正確填寫在答題卡上第I卷(選擇題)請(qǐng)點(diǎn)擊修改第I卷的文字說(shuō)明評(píng)卷人得分一、選擇題(題型注釋)第II卷(非選擇題)請(qǐng)點(diǎn)擊修改第II卷的文字說(shuō)明評(píng)卷人得分
【摘要】1.平面直角坐標(biāo)系中的坐標(biāo)伸縮變換設(shè)點(diǎn)P(x,y)是平面直角坐標(biāo)系中的任意一點(diǎn),在變換的作用下,點(diǎn)P(x,y)對(duì)應(yīng)到點(diǎn),稱為平面直角坐標(biāo)系中的坐標(biāo)伸縮變換,簡(jiǎn)稱伸縮變換.(1)極坐標(biāo)系如圖所示,在平面內(nèi)取一個(gè)定點(diǎn),叫做極點(diǎn),自極點(diǎn)引一條射線,叫做極軸;再選定一個(gè)長(zhǎng)度單位,一個(gè)角度單位(通常取弧度)及其正方向(通常取逆時(shí)針?lè)较?,這樣就建立了一個(gè)極坐標(biāo)系.注:極坐標(biāo)系以角這一平
2025-08-10 16:26
【摘要】極坐標(biāo)及極坐標(biāo)方程的應(yīng)用1.極坐標(biāo)系的建立在平面內(nèi)取一個(gè)定點(diǎn)O,叫作極點(diǎn),引一條射線OX,叫做極軸,再選定一個(gè)長(zhǎng)度單位和角度的正方向(通常取逆時(shí)針?lè)较?。對(duì)于平面內(nèi)任意一點(diǎn)M,用r表示線段OM的長(zhǎng)度,q表示從OX到OM的角度,r叫點(diǎn)M的極徑,q叫點(diǎn)M的極角,有序數(shù)對(duì)()rq,就叫點(diǎn)M的極坐標(biāo)。這樣建立的坐標(biāo)系叫極坐標(biāo)系,記作M()rq,.若點(diǎn)M在極點(diǎn),則其極坐標(biāo)為r=0,q可
2025-08-11 02:46