【摘要】勾股定理經(jīng)典例題類型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路點撥:寫解的過程中,一定要先寫上在哪個直角三角形中,注意勾股定理的變形使用。舉一反三【變式】:如圖∠B=∠ACD=90
2024-08-03 05:28
【摘要】答案1、25海里2、3、10千米4、20km5、(1)AB=30海里BC=40海里(2)省1小時6、96平方米7、2√3–48、4米9、10天10、AB=12m11、7米12、13、10米14、7200元15、480元16
2024-08-02 07:15
【摘要】勾股定理中考難題1、如圖,點E在正方形ABCD內(nèi),滿足∠AEB=90°,AE=6,BE=8,則陰影部分的面積是( ?。.48B.60C.76D.802、如圖,在平面直角坐標系中,Rt△OAB的頂點A在x軸的正半軸上.頂點B的坐標為(3,),點C的坐標為(,0),點P為斜邊OB上的一個動點,則PA+PC的最小值為( ) A
2024-08-02 04:18
【摘要】勾股定理經(jīng)典例題透析類型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路點撥:寫解的過程中,一定要先寫上在哪個直角三角形中,注意勾股定理的變形使用。解析:(1)在△ABC中,∠C=90°,a=6,c=10,b=
【摘要】勾股定理經(jīng)典例題含答案11頁勾股定理是一個基本的初等幾何定理,直角三角形兩直角邊的平方和等于斜邊的平方。如果直角三角形兩直角邊為a和b,斜邊為c,那么a2+b2=c2,若a、b、c都是正整數(shù),(a,b,c)叫做勾股數(shù)組。勾股定理現(xiàn)約有500種證明方法,是數(shù)學定理中證明方法最多的定理之一。勾股定理是人類早期發(fā)現(xiàn)并證明的重要數(shù)學定理之一,用代數(shù)思想解決幾何問題的
2024-08-03 07:40
【摘要】......勾股定理經(jīng)典例題類型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求
【摘要】高任祿成勾股定理練習題一、基礎(chǔ)達標:1.下列說法正確的是( )a、b、c是△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,,則a2+b2=c2;a
【摘要】練習題1如圖,圓柱的高為10cm,底面半徑為2cm.,在下底面的A點處有一只螞蟻,它想吃到上底面上與A點相對的B點處,需要爬行的最短路程是多少?2如圖,長方體的高為3cm,底面是邊長為2cm的正方形.現(xiàn)有一小蟲從頂點A出發(fā),沿長方體側(cè)面到達頂點C處,小蟲走的路程最短為多少厘米?答案AB=5B’C’B′A′C′D′3、
2024-08-03 07:41
【摘要】勾股定理的逆定理達標訓練一、基礎(chǔ)·鞏固,不是直角三角形的是()∶2∶3∶2∶3∶4∶5∶4∶5-2-4所示,有一個形狀為直角梯形的零件ABCD,AD∥BC,斜腰DC的長為10cm,∠D=120°,則該零件另一腰AB的長是________cm(結(jié)果不取近似值).
2024-08-02 04:05
【摘要】經(jīng)典例題透析類型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路點撥:寫解的過程中,一定要先寫上在哪個直角三角形中,注意勾股定理的變形使用。解析:(1)在△ABC中,∠C=90°,a=6,c=10,b=
2024-08-03 07:39
【摘要】勾股定理競賽培訓題1、如圖1,△ABC和△CDE都是等腰直角三角形,∠C=90°,將△CDE繞點C逆時針旋轉(zhuǎn)一個角度α(0°<α<90°),使點A,D,E在同一直線上,連接AD,BE.(1)①依題意補全圖2;②求證:AD=BE,且AD⊥BE;③作CM⊥DE,垂足為M,請用等式表示出線段CM,AE,BE之間的數(shù)量關(guān)系;(2)如圖3,正方形ABC
2024-08-08 00:04
【摘要】勾股定理復習一、知識要點:1、勾股定理勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。也就是說:如果直角三角形的兩直角邊為a、b,斜邊為c,那么a2+b2=c2。公式的變形:a2=c2-b2,b2=c2-a2。勾股定理在西方叫畢達哥拉斯定理,也叫百牛定理。它是直角三角形的一條重要性質(zhì),揭示的是三邊之間的數(shù)量關(guān)系。它的主要作用是已知直角三角形的兩邊求第三邊
2024-08-02 19:16
【摘要】高任祿成勾股定理練習題一、基礎(chǔ)達標:1.下列說法正確的是( ?。゛、b、c是△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,,則a2+b2=c2;a
2024-08-08 01:48