【摘要】勾股定理1.勾股定理是把形的特征(三角形中有一個(gè)角是直角),轉(zhuǎn)化為數(shù)量關(guān)系(a2+b2=c2),不僅可以解決一些計(jì)算問(wèn)題,而且通過(guò)數(shù)的計(jì)算或式的變形來(lái)證明一些幾何問(wèn)題,特別是證明線(xiàn)段間的一些復(fù)雜的等量關(guān)系.在幾何問(wèn)題中為了使用勾股定理,常作高(或垂線(xiàn)段)等輔助線(xiàn)構(gòu)造直角三角形.2.勾股定理的逆定理是把數(shù)的特征(a2+b2=c2)轉(zhuǎn)化為形的特征(三角形中的一個(gè)角是直角),可以有機(jī)地與式
2025-06-22 07:28
【摘要】八年級(jí)勾股定理同步練習(xí)及答案練習(xí)一()1.如圖字母B所代表的正方形的面積是()A.12B.13C.144D.194,,,把竹竿的頂端拉向岸邊,竿頂和岸邊的水平剛好相齊,河水的深度為().3.△ABC中,若AB=15,AC=13,高AD=12,則△ABC的周長(zhǎng)是()
2025-06-22 04:05
【摘要】!勾股定理的逆定理一、填空1.的兩邊分別為5,12,另—邊c為奇數(shù),且a+b+c是3的倍數(shù),則c應(yīng)為_(kāi)________,此三角形為_(kāi)_______.2.三角形中兩條較短的邊為a+b,a-b(ab),則當(dāng)?shù)谌龡l邊為_(kāi)______時(shí),此三角形為直角三角形.3.若的三邊a,b,c滿(mǎn)足a2+b2+c2+50=6a+8b+l0c,則此三角形是_______
2026-01-04 22:59
【摘要】一、證明方法bbbbccccaaaacbaAB2、面積1、求陰影部分面積:(1)陰影部分是正方形;(2)陰影部分是長(zhǎng)方形;(3)陰影部分是半圓.2.如圖,以Rt△ABC的三邊為直徑分別向外作三個(gè)半圓,試探索三個(gè)半圓的面積之間的關(guān)系.3
2025-03-24 12:59
【摘要】勾股定理習(xí)題1.“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國(guó)古代數(shù)學(xué)的驕傲,如圖所示的“趙爽弦圖”是由四個(gè)全等的直角三角形和一個(gè)小正方形拼成的一個(gè)大正方形,設(shè)直角三角形較長(zhǎng)直角邊長(zhǎng)為a,較短直角邊長(zhǎng)為b,若(a+b)2=21,大正方形的面積為13,則小正方形的面積為( ?。〢.3B.4C.5D.6【解答】解:如圖所示:∵(a+b)2=21,∴a2+2
【摘要】勾股定理5分鐘訓(xùn)練(預(yù)習(xí)類(lèi)訓(xùn)練,可用于課前)△ABC中,∠C=90°.(1)若a=3,b=4,則c=__________________;(2)若a=6,c=10,則b=__________________.[來(lái)源:學(xué)科網(wǎng)ZXXK]答案:(1)5(2)8,寫(xiě)出字母代表的正方形面積,A=__________________B=_____________
2025-03-24 04:35
【摘要】第1頁(yè)(共14頁(yè))勾股定理的逆定理一.選擇題(共7小題)1.下列長(zhǎng)度的三條線(xiàn)段能組成鈍角三角形的是()A.3,4,4B.3,4,5C.3,4,6D.3,4,72.△ABC中,∠A,∠B,∠C的對(duì)邊分別記為a,b,c,由下列條件不能判定△AB
2026-01-01 03:23
【摘要】勾股定理課時(shí)練(1)1.在直角三角形ABC中,斜邊AB=1,則AB的值是(),AD∥BC,斜腰DC的長(zhǎng)為10cm,∠D=120°,則該零件另一腰AB的長(zhǎng)是______cm(結(jié)果不取近似值).3.直角三角形兩直角邊長(zhǎng)分別為5和12,則它斜邊上的高為_(kāi)______.,猶如裝有鉸鏈那樣倒向地面,旗桿頂落于離旗桿地步16,
2025-06-22 07:15
【摘要】2022-2022學(xué)年度八年級(jí)下學(xué)期第17章勾股定理單元測(cè)試考試范圍:第17章勾股定理;考試時(shí)間:100分鐘;學(xué)校:___________姓名:___________班級(jí):___________考號(hào):___________題號(hào)一二三總分得分評(píng)卷人得分一、選擇題(每題2分,共
2025-12-30 21:08
【摘要】一、選擇題1、在Rt△ABC中,∠C=90°,三邊長(zhǎng)分別為a、b、c,則下列結(jié)論中恒成立的是() A、2abc2 D、2ab≤c22、已知x、y為正數(shù),且│x2-4│+(y2-3)2=0,如果以x、y的長(zhǎng)為直角邊作一個(gè)直角三角形,那么以這個(gè)直角三角形的斜邊為邊長(zhǎng)的正方形的面積為() A、5 B、25
2025-06-23 05:28
【摘要】勾股定理能力測(cè)試卷一、選擇題(每小題3分,共30分)1.直角三角形一直角邊長(zhǎng)為12,另兩條邊長(zhǎng)均為自然數(shù),則其周長(zhǎng)為().(A)30(B)28(C)56(D)不能確定2.直角三角形的斜邊比一直角邊長(zhǎng)2cm,另一直角邊長(zhǎng)為6cm,則它的斜邊長(zhǎng)(A)4cm (B)8cm (C)10cm
2025-06-22 04:06
【摘要】《勾股定理》總結(jié)與提升一、知識(shí)要點(diǎn):1、勾股定理勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。也就是說(shuō):如果直角三角形的兩直角邊為a、b,斜邊為c,那么a2+b2=c2。公式的變形:a2=c2-b2,b2=c2-a2。2、勾股定
2025-03-24 13:01
【摘要】勾股定理逆定理的應(yīng)用檢測(cè)題.如圖6,甲乙兩船從港口A(yíng)同時(shí)出發(fā),甲船以16海里/時(shí)速度向北偏東50°航行,乙船以12海里/時(shí)向南偏東方向航行,3小時(shí)后,甲船到達(dá)C島,、B兩島相距60海里,問(wèn)乙船出發(fā)后的航向是南偏東多少度?(10分)圖65.如圖,△ABC的三邊分別為AC=5,BC=12,AB=13,將△ABC沿AD折疊,使AC落在A(yíng)B上,求
【摘要】《勾股定理》典型例題折疊問(wèn)題1、如圖,有一張直角三角形紙片,兩直角邊AC=6,BC=8,將△ABC折疊,使點(diǎn)B與點(diǎn)A重合,折痕為DE,則CD等于()A.B.C.D.
【摘要】第一篇:勾股定理與幾何證明答案 1、勾股定理與幾何證明的綜合問(wèn)題 練習(xí) 一、利用勾股定理證明一些重要的幾何定理 1、如圖,在Rt△ABC中,∠ACB=90°,:(1)CD2=AD·BD (這...
2025-11-07 05:54