【摘要】精心整理圓錐曲線大題題型歸納基本方法:1.待定系數(shù)法:求所設(shè)直線方程中的系數(shù),求標(biāo)準(zhǔn)方程中的待定系數(shù)、、、、等等;2.齊次方程法:解決求離心率、漸近線、夾角等與比值有關(guān)的問(wèn)題;3.韋達(dá)定理法:直線與曲線方程聯(lián)立,交點(diǎn)坐標(biāo)設(shè)而不求,用韋達(dá)定理寫出轉(zhuǎn)化完成。要注意:如果方程的根很容易求出,就不必用韋達(dá)定理,而直接計(jì)算出兩個(gè)根;4.點(diǎn)差法:弦中點(diǎn)問(wèn)題,端點(diǎn)坐標(biāo)設(shè)而不求。
2024-09-03 00:34
【摘要】......圓錐曲線專題練習(xí)一、選擇題,則到另一焦點(diǎn)距離為()A.B.C.D.2.若橢圓的對(duì)稱軸為
2024-08-04 02:09
【摘要】......圓錐曲線經(jīng)典題型 一.選擇題(共10小題)1.直線y=x﹣1與雙曲線x2﹣=1(b>0)有兩個(gè)不同的交點(diǎn),則此雙曲線離心率的范圍是( )A.(1,) B.(,+∞) C.(1,+∞) D.(1,)∪
2024-08-04 02:10
【摘要】....圓錐曲線經(jīng)典題型 一.選擇題(共10小題)1.直線y=x﹣1與雙曲線x2﹣=1(b>0)有兩個(gè)不同的交點(diǎn),則此雙曲線離心率的范圍是( ?。〢.(1,) B.(,+∞) C.(1,+∞) D.(1,)∪(,+∞)2.已知M(x0,y0)是雙曲線C:=1上的一點(diǎn),F(xiàn)
2024-08-03 07:21
【摘要】精心整理,祝高考學(xué)子有好成績(jī)高考圓錐曲線試題精選一、選擇題:(每小題5分,計(jì)50分)1、(2008海南、寧夏文)雙曲線的焦距為()A.3 B.4 C.3 D.42.(2004全國(guó)卷Ⅰ文、理)橢圓的兩個(gè)焦點(diǎn)為F1、F2,過(guò)F1作垂直于x軸的直線與橢圓相交,一個(gè)交點(diǎn)為P,則=() A.B.C.D.43.(
2024-09-15 18:10
【摘要】......圓錐曲線橢圓專項(xiàng)訓(xùn)練【例題精選】:例1求下列橢圓的標(biāo)準(zhǔn)方程: (1)與橢圓有相同焦點(diǎn),過(guò)點(diǎn); (2)一個(gè)焦點(diǎn)為(0,1)長(zhǎng)軸和短軸的長(zhǎng)度之比為t; (3)兩焦點(diǎn)與短軸一個(gè)端點(diǎn)為正三
2024-08-02 15:55
【摘要】圓錐曲線經(jīng)典題型 一.選擇題(共10小題)1.直線y=x﹣1與雙曲線x2﹣=1(b>0)有兩個(gè)不同的交點(diǎn),則此雙曲線離心率的范圍是( ?。〢.(1,) B.(,+∞) C.(1,+∞) D.(1,)∪(,+∞)2.已知M(x0,y0)是雙曲線C:=1上的一點(diǎn),F(xiàn)1,F(xiàn)2是C的左、右兩個(gè)焦點(diǎn),若<0,則y0的取值范圍是( )A. B. C. D.3.設(shè)F1,F(xiàn)2分
2024-08-03 07:22
【摘要】WORD資料可編輯圓錐曲線經(jīng)典題型 一.選擇題(共10小題)1.直線y=x﹣1與雙曲線x2﹣=1(b>0)有兩個(gè)不同的交點(diǎn),則此雙曲線離心率的范圍是( ?。〢.(1,) B.(,+∞) C.(1,+∞) D.(1,)∪(,+∞)2.已知M(x0,y0)是
【摘要】......橢圓題型總結(jié)
【摘要】WORD資料可編輯圓錐曲線專題練習(xí)一、選擇題,則到另一焦點(diǎn)距離為()A.B.C.D.2.若橢圓的對(duì)稱軸為坐標(biāo)軸,長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的和為,焦距為,則
【摘要】第九章 求曲線(或直線)方程解析幾何求曲線(或直線)的方程一、基礎(chǔ)知識(shí):1、求曲線(或直線)方程的思考方向大體有兩種,一個(gè)方向是題目中含幾何意義的條件較多(例如斜率,焦距,半軸長(zhǎng),半徑等),那么可以考慮利用幾何意義求出曲線方程中的要素的值,從而按定義確定方程;另一個(gè)方向是
2024-09-04 00:15
【摘要】WORD資料可編輯圓錐曲線橢圓專項(xiàng)訓(xùn)練【例題精選】:例1求下列橢圓的標(biāo)準(zhǔn)方程: (1)與橢圓有相同焦點(diǎn),過(guò)點(diǎn); (2)一個(gè)焦點(diǎn)為(0,1)長(zhǎng)軸和短軸的長(zhǎng)度之比為t; (3)兩焦點(diǎn)與短軸一個(gè)端點(diǎn)為正三角形的頂點(diǎn),焦點(diǎn)到橢圓的最短距離為。
【摘要】此片論文先獲《華南師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院2014—2015年度課程論文》比賽一等獎(jiǎng)后發(fā)于《數(shù)學(xué)學(xué)習(xí)與研究》期刊2016年01期所屬欄目:解題技巧與方法解圓錐曲線大題的精髓——設(shè)而不求侯勝哲(華南師范大學(xué)數(shù)學(xué)科學(xué)學(xué)學(xué)院,廣州)摘要:主要針對(duì)高中成績(jī)?cè)谥械鹊膶W(xué)生,讓他們對(duì)解圓錐曲線大題有一定方向性的認(rèn)識(shí),,對(duì)老師有教學(xué)參考價(jià)值,希望老師先將復(fù)雜問(wèn)題簡(jiǎn)化,先解決
2025-05-12 07:47
【摘要】圓錐曲線橢圓專項(xiàng)訓(xùn)練【例題精選】:例1求下列橢圓的標(biāo)準(zhǔn)方程: (1)與橢圓有相同焦點(diǎn),過(guò)點(diǎn); (2)一個(gè)焦點(diǎn)為(0,1)長(zhǎng)軸和短軸的長(zhǎng)度之比為t; (3)兩焦點(diǎn)與短軸一個(gè)端點(diǎn)為正三角形的頂點(diǎn),焦點(diǎn)到橢圓的最短距離為。 (4) 例2已知橢圓的焦點(diǎn)為。 (1)求橢圓的標(biāo)準(zhǔn)方程; (2)設(shè)點(diǎn)P在這個(gè)橢圓上,且,求:的值
2024-08-02 14:59
【摘要】大慶目標(biāo)教育圓錐曲線一、知識(shí)結(jié)構(gòu)在平面直角坐標(biāo)系中,如果某曲線C(看作適合某種條件的點(diǎn)的集合或軌跡)上的點(diǎn)與一個(gè)二元方程f(x,y)=0的實(shí)數(shù)解建立了如下的關(guān)系:(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解;(2);這條曲線叫做方程的曲線.點(diǎn)與曲線的關(guān)系若曲線C的方程是f(x,y)=0,則點(diǎn)P0(x0,y0)在曲線C上f(x0,y0)=0;點(diǎn)P0(x0,y0)
2024-09-14 14:02