【摘要】第十七章勾股定理勾股定理第2課時勾股定理的實際應用學習指南知識管理歸類探究分層作業(yè)當堂測評學習指南★本節(jié)學習主要解決以下問題★勾股定理的實際應用此內(nèi)容為本節(jié)的重點,也是難點.為此設計了【歸類探究】中
2025-08-03 12:10
【摘要】第2課時勾股定理(二),也可以表示,數(shù)軸上的點和.一一對應.(,,…)的點.如圖所示..有關銳角三角形或鈍角三角形的計算問題也可以轉(zhuǎn)化為含有三角形的計算問題,應用勾股定理加以解決,關鍵在于找出這個三角形.23無理數(shù)實數(shù)
2025-07-30 12:23
2025-07-31 14:25
【摘要】勾股定理第十七章勾股定理導入新課講授新課當堂練習課堂小結(jié)八年級數(shù)學下(RJ)教學課件第1課時勾股定理學習目標,了解關于勾股定理的一些文化歷史背景,會用面積法來證明勾股定理,體會數(shù)形結(jié)合的思想.(重點).(難點)
2025-07-30 06:33
【摘要】勾股定理第1課時勾股定理(一)如果直角三角形的兩條直角邊長分別為a,b,斜邊長為c,那么a2+b2=c2.如圖,在△ABC中,∠C=90°.(1)若已知a,b,則斜邊c=;(2)若已知a,c,則b=;(3)若已知c,b,則a=.22
2025-07-30 12:25
【摘要】第十七章 勾股定理 勾股定理第1課時 勾股定理的認識知識點1知識點2勾股定理的證明選項中,不能用來證明勾股定理的是(??D??)2.【教材延伸】如圖,“趙爽弦圖”是由四個全等的直角三角形拼成一個大的正方形,是我國古代數(shù)學的驕傲,巧妙地利用面積關系證明了勾股定理.已
2025-08-02 12:01
【摘要】第十七章勾股定理學練考數(shù)學八年級下冊R勾股定理的逆定理第1課時勾股定理的逆定理
2025-07-30 14:19
【摘要】第2課時 勾股定理的實際應用實際生活中的與直角三角形有關的許多問題.如長度、高度、距離、面積、體積等問題往往需要用勾股定理來解決.強量得家里新購置的彩電熒光屏的長為58cm,寬為46cm,則這臺電視機的尺寸(即電視機屏幕對角線的長度,實際測量的誤差可不計)是( )(約2
2025-08-01 20:58
【摘要】第十七章 勾股定理 勾股定理第1課時 勾股定理:如果直角三角形的兩條直角邊長分別為a,b,斜邊長為c,那么 .?明勾股定理的常用方法: ,如“趙爽弦圖”等.積如圖所示,則面積為S的正方形的邊長是( ) ?a2+b2=c2
2025-08-05 12:26
2025-08-04 20:59
【摘要】第十七章勾股定理勾股定理第1課時勾股定理的驗證勾股定理:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那么a,b,c三條邊滿足的關系式是.a2+b2=c2知識點1:勾股定理的認識解:(1)A所代表的正方形的面積為144+81=225.(2)B所代表的正方形的面積為625-400=22
2025-08-03 15:03
【摘要】勾股定理第2課時勾股定理的實際應用第2課時勾股定理的實際應用知識目標1.在理解直角三角形三邊關系的基礎上,通過對實際問題的分析,能用勾股定理解決與直角三角形三邊有關的實際問題.2.利用勾股定理,結(jié)合“兩點之間,線段最短”,會求平面上兩點之間的最短距離.3.在掌握立體圖形展開圖的前提下,利用勾股定理求立體圖
2025-08-04 01:48
【摘要】第18章 勾股定理 第 第2課時 勾股定理的應用課時 勾股定理的應用 第2課時 勾股定理的應用目標突破目標突破總結(jié)反思總結(jié)反思第18章 勾股定理知識目標知識目標知識目標知識目標第2課時 勾股定理的應用目標突破目標突破目標一 會利用勾股定理解決實際問題第2課時 勾股定理的應用第2課時 勾股定理的應用
2025-08-07 12:03
【摘要】第18章勾股定理勾股定理知識點勾股定理的應用1.將13米長的梯子靠在一堵墻上,若梯子的底部離墻角5米,則梯子的頂部離墻角(B)A.11米B.12米C.13米D.14米2.如圖,在邊長為1個單位長度的正方形網(wǎng)格中,以網(wǎng)格線的交點為頂點構(gòu)成△A
2025-07-31 12:20