【摘要】導(dǎo)入新課講授新課當堂練習課堂小結(jié)銳角三角函數(shù)第二十八章銳角三角函數(shù)第1課時解直角三角形的簡單應(yīng)用九年級數(shù)學下(RJ)教學課件學習目標1.鞏固解直角三角形相關(guān)知識.(重點)2.能從實際問題中構(gòu)造直角三角形,從而把實際問題轉(zhuǎn)化為解直角三角形的問題
2024-07-28 12:51
【摘要】解直角三角形及其應(yīng)用解直角三角形根據(jù)以上條件可以求出塔身中心線與垂直中心線的夾角.你愿意試著計算一下嗎?如圖設(shè)塔頂中心點為B,塔身中心線與垂直中心線的夾角為A,過點B向垂直中心線引垂線,垂足為點C,在Rt△ABC中,∠C=90°,BC=,AB=利用計算器可得.BCA
2024-07-24 12:12
2024-07-24 12:13
【摘要】第二十八章銳角三角函數(shù)解直角三角形及其應(yīng)用第1課時解直角三角形數(shù)學九年級下冊配人教版課前預(yù)習A.解直角三角形:一個直角三角形中除了直角還有__個元素,即兩條________、一條____邊和______銳角,已知其中___個元素(至少有一條邊),求出其他三個量的過程叫做
2024-07-26 12:04
【摘要】應(yīng)用舉例第1課時(2)兩銳角之間的關(guān)系∠A+∠B=90°(3)邊角之間的關(guān)系caAA???斜邊的對邊sincbBB???斜邊的對邊sincbAA???斜邊的鄰邊coscaBB???斜邊的鄰邊cosbaAAA???
2024-07-31 00:53
【摘要】 應(yīng)用舉例(1)學前溫故新課早知由直角三角形中的已知元素,求出其余未知元素的過程,叫做 .?解直角三角形,視線與水平線的夾角叫做 ,從上往下看,視線與水平線的夾角叫做 .?為測樓房BC的高,在距樓房30m的A處測得樓頂B的仰角為α,則樓房BC的高
2024-07-30 12:03
【摘要】解直角三角形及其應(yīng)用解直角三角形【基礎(chǔ)梳理】由直角三角形中的_________,求出其余_________的過程.已知元素未知元素如圖,在Rt△ABC中,∠C=90°,a,b,c,∠A,∠B為其五個元素.這五個元素之間的關(guān)系如下:(1)兩銳角之間的關(guān)系:∠A+∠B=__
2024-07-27 13:59
2024-07-31 00:38
【摘要】應(yīng)用舉例第2課時,仰角與俯角有何區(qū)別?如圖,有兩建筑物,在甲建筑物上從A到E點掛一長為30米的宣傳條幅,在乙建筑物的頂部D點測得條幅頂端A點的仰角為45°,條幅底端E點的俯角為30°.求甲、乙兩建筑物之間的水平距離BC.AEDCB甲乙
2024-07-23 08:22
2024-07-29 05:07
【摘要】應(yīng)用舉例第1課時【基礎(chǔ)梳理】、俯角的概念(1)測量時,在視線與水平線所成的角中,視線在水平線_____的角叫做仰角.(2)視線在水平線_____的角叫做俯角(如圖所示).上方下方(1)把實際問題建立_________.(2)根據(jù)已知條件,選用適當?shù)腳____函數(shù)解直角三角形
2024-07-31 03:56
【摘要】 應(yīng)用舉例(1),視線與水平線的夾角叫做 ,從上往下看,視線與水平線的夾角叫做 .?為測樓房BC的高,在距樓房30m的A處測得樓頂B的仰角為α,則樓房BC的高為 m.?實際問題時,可以直接或通過作輔助線,構(gòu)造出直角三角形,化歸為解
2024-07-29 12:03
2024-07-27 15:39
【摘要】應(yīng)用舉例第2課時,仰角與俯角有何區(qū)別?如圖,有兩建筑物,在甲建筑物上從A到E點掛一長為30米的宣傳條幅,在乙建筑物的頂部D點測得條幅頂端A點的仰角為45°,條幅底端E點的俯角為30°.求甲、乙兩建筑物之間的水平距離BC.AEDCB甲乙、坡度有關(guān)的實際問題.、解
2024-07-30 12:16