【摘要】第四節(jié)等腰三角形考點一等腰三角形的性質與判定(5年2考)例1(2022·桂林中考)如圖,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,則圖中等腰三角形的個數(shù)是.【分析】首先根據(jù)已知條件分別計算圖中每一個三角形每個角的度數(shù),然后根據(jù)等角對等邊解答,做題時
2024-07-23 17:12
2024-07-23 15:24
【摘要】第五節(jié)直角三角形考點一勾股定理及其逆定理(5年2考)命題角度?勾股定理及其逆定理例1(2022·東營中考)在△ABC中,AB=10,AC=2,BC邊上的高AD=6,則另一邊BC等于()A.10B.8C.6或10D.8或10
【摘要】第二節(jié)三角形的有關概念及性質考點一三角形的三邊關系(5年0考)例1三角形兩邊長分別為3和6,第三邊的長是方程x2-13x+36=0的兩根,則該三角形的周長為()A.13B.15C.18D.13或18【分析】先求出方程x2-13x+36=0的
2024-07-23 13:25
2024-07-23 13:27
【摘要】第四章三角形三角形及其性質考點1三角形的分類陜西考點解讀三角形按邊的關系分類如下:三角形按邊的關系分類如下:陜西考點解讀等腰三角形中至少有兩邊相等,而等邊三角形的三邊都相等,所以等邊三角形是特殊的等腰三角形。【特別提示】【提分必練】1∶2∶3,則這個三角形一定是(
2024-07-29 00:31
【摘要】第四章三角形三角形及其性質考點1三角形的分類陜西考點解讀三角形按邊的關系分類如下:三角形按邊的關系分類如下:陜西考點解讀等腰三角形中至少有兩邊相等,而等邊三角形的三邊都相等,所以等邊三角形是特殊的等腰三角形?!咎貏e提示】【提分必練】1∶2∶3,則這個三角形一定是(
2024-07-23 12:00
【摘要】第二節(jié)三角形的基礎考點一三角形的三邊關系例1(2022·福建中考)下列各組數(shù)中,能作為一個三角形三邊邊長的是()A.1,1,2B.1,2,4C.2,3,4D.2,3,5【分析】根據(jù)三角形中任意兩邊之和大于第三邊,任意兩邊之差小于第三邊,即可求解.【自主解答】
2024-07-28 20:27
【摘要】第三節(jié)全等三角形考點一全等三角形的判定(5年2考)例1(2022·東營中考)如圖,在△ABC中,AB>AC,點D,E分別是邊AB,AC的中點,點F在BC邊上,連接DE,DF,EF,則添加下列哪一個條件后,仍無法判斷△FCE與△EDF全等()A.∠A=∠DFEB.B
2024-07-24 03:43
【摘要】第六節(jié)解直角三角形及其應用考點一銳角三角函數(shù)(5年0考)例1(2022·德州中考)如圖,在4×4的正方形方格圖形中,小正方形的頂點稱為格點,△ABC的頂點都在格點上,則∠BAC的正弦值是.【分析】先根據(jù)勾股定理的逆定理判斷出△ABC的形狀,再由銳角三角函數(shù)的定義即可
2024-07-23 13:09
2024-07-23 20:51
【摘要】第二節(jié)三角形及其性質考點一三角形三條邊的關系例1(2022·福建A卷)下列各組數(shù)中,能作為一個三角形三邊邊長的是()A.1,1,2B.1,2,4C.2,3,4D.2,3,5【分析】根據(jù)三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊求解.【自主解
2024-07-26 21:56
2024-07-27 01:08
【摘要】第二節(jié)三角形的基礎考點一三角形的三邊關系例1(2022·福建中考)下列各組數(shù)中,能作為一個三角形三邊邊長的是()A.1,1,2B.1,2,4C.2,3,4D.2,3,5【分析】根據(jù)三角形中任意兩邊之和大于第三邊,任意兩邊之差小于第三邊,即可求解.【自主解答】選
2024-07-26 20:42