【摘要】第二節(jié)一般三角形考點一三角形三條邊的關系例1(2022·福建A卷)下列各組數(shù)中,能作為一個三角形三邊邊長的是()A.1,1,2B.1,2,4C.2,3,4D.2,3,5【分析】根據(jù)三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊求解.【自主解答
2025-08-06 17:07
【摘要】第五節(jié)解直角三角形及其應用考點一解直角三角形的實際應用命題角度?母子型例1(2022·河南)如圖所示,我國兩艘海監(jiān)船A,B在南海海域巡航,某一時刻,兩船同時收到指令,立即前往救援遇險拋錨的漁船C,此時B船在A船的正南方向5海里處,A船測得漁船C在其南偏東45°方向,B船測得漁船C在其南
2025-08-02 21:42
2025-08-03 01:08
【摘要】第四節(jié)全等三角形考點全等三角形的判定與性質命題角度?平移型例1(2022·瀘州)如圖,EF=BC,DF=AC,DA=:∠F=∠C.【分析】由DA=EB可證得DE=AB,又因為EF=BC,DF=AC,所以可根據(jù)“SSS”證得△DEF≌△ABC,從而根據(jù)“全等三角形
2025-08-04 03:30
【摘要】第四節(jié)全等三角形考點全等三角形的判定及性質命題角度?平移型例1(2022·云南省卷)如圖,點E、C在線段BF上,BE=CF,AB=DE,AC=:∠ABC=∠DEF.【分析】先證明△ABC≌△DEF,然后利用全等三角形的性質即可得證.【自主解答】證明:∵BE=CF,
2025-08-08 06:15
2025-07-30 01:33
【摘要】第四章三角形相似三角形考點1比例線段陜西考點解讀中考說明:、線段的比、成比例的線段。:兩條直線被一組平行線所截,所得的對應線段成比例。(1)(2)(3)(0,0);acadbcbdbd?????2(0,0);abbacbcbc?????(0)ac
2025-07-30 12:00
【摘要】第四章三角形全等三角形考點1全等三角形的概念及性質陜西考點解讀中考說明:理解全等三角形的概念,能識別全等三角形中的對應邊,對應角。:能夠完全重合的兩個三角形叫作全等三角形。(1)全等三角形的對應邊①相等,全等三角形的對應角②相等。(2)全等三角形的對應線段(如對應角的平分線,對應邊上的中線、高)
2025-08-07 14:03
2025-08-07 13:46
【摘要】第四章三角形第二節(jié)三角形的基本性質考點一三角形三邊關系例1(2022·長沙)下列長度的三條線段,能組成三角形的是()A.4cm,5cm,9cmB.8cm,8cm,15cmC.5cm,5cm,10cmD.6cm,7cm
2025-08-08 06:01
【摘要】第四章三角形考點一線段的相關計算例1已知A,B,C是數(shù)軸上的三個點,且C在B的右側.點A,B表示的數(shù)分別是1,3,如圖所示,若AC=2AB,則點C表示的數(shù)是.【分析】根據(jù)AC=2AB,且點C在B的右側,可知點B是AC的中點,再根據(jù)A、B表示的數(shù)可求得點C表示的數(shù).
2025-07-30 01:32
2025-08-08 06:45
【摘要】好題隨堂演練第三節(jié)特殊三角形好題隨堂演練考點一等腰三角形的相關計算例1(2022·云南省卷)如圖,在等腰△ABC中,AB=AC,∠A=36°,BD⊥AC于點D,則∠CBD=.【分析】根據(jù)已知可求得兩底角的度數(shù),再根據(jù)三角形內角和定理不難求得∠DBC的度數(shù).
【摘要】第四節(jié)全等三角形考點全等三角形的判定及性質百變例題7(2022·福建)如圖,點B,E,C,F(xiàn)在一條直線上,AB=DE,AC=DF,BE=:∠A=∠D.【分析】觀察圖形,根據(jù)已知條件邊的關系,判定三角形全等,再根據(jù)全等三角形的性質得到角的關系.【自主解答】證明:∵BE=C
2025-07-30 15:58
【摘要】第三節(jié)特殊三角形考點一等腰三角形的判定與性質例1(2022·瀘州)如圖,等腰△ABC的底邊BC=20,面積為120,點F在邊BC上,且BF=3FC,EG是腰AC的垂直平分線,若點D在EG上運動,則△CDF周長的最小值為.【分析】根據(jù)兩點之間,線段最短確定最小值點,再利用等腰三角形的性質進行求解
2025-08-04 03:16