【摘要】第四章三角形相似三角形考點(diǎn)1比例線段陜西考點(diǎn)解讀中考說明:、線段的比、成比例的線段。:兩條直線被一組平行線所截,所得的對應(yīng)線段成比例。(1)(2)(3)(0,0);acadbcbdbd?????2(0,0);abbacbcbc?????(0)ac
2025-07-30 12:00
【摘要】第四章三角形全等三角形考點(diǎn)1全等三角形的概念及性質(zhì)陜西考點(diǎn)解讀中考說明:理解全等三角形的概念,能識別全等三角形中的對應(yīng)邊,對應(yīng)角。:能夠完全重合的兩個三角形叫作全等三角形。(1)全等三角形的對應(yīng)邊①相等,全等三角形的對應(yīng)角②相等。(2)全等三角形的對應(yīng)線段(如對應(yīng)角的平分線,對應(yīng)邊上的中線、高)
2024-07-31 14:03
2024-07-31 13:46
【摘要】第三節(jié)全等三角形考點(diǎn)一全等三角形的判定及性質(zhì)百變例題4如圖,點(diǎn)B,E,C,F(xiàn)在一條直線上,AB=DE,AC=DF,BE=:∠A=∠D.【自主解答】證明:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF
2024-07-27 01:17
【摘要】第四節(jié)全等三角形考點(diǎn)全等三角形的判定及性質(zhì)百變例題7(2022·福建)如圖,點(diǎn)B,E,C,F(xiàn)在一條直線上,AB=DE,AC=DF,BE=:∠A=∠D.【分析】觀察圖形,根據(jù)已知條件邊的關(guān)系,判定三角形全等,再根據(jù)全等三角形的性質(zhì)得到角的關(guān)系.【自主解答】證明:∵BE=C
2025-07-30 15:58
2024-07-26 14:35
【摘要】第三節(jié)特殊三角形考點(diǎn)一等腰三角形的判定與性質(zhì)例1(2022·瀘州)如圖,等腰△ABC的底邊BC=20,面積為120,點(diǎn)F在邊BC上,且BF=3FC,EG是腰AC的垂直平分線,若點(diǎn)D在EG上運(yùn)動,則△CDF周長的最小值為.【分析】根據(jù)兩點(diǎn)之間,線段最短確定最小值點(diǎn),再利用等腰三角形的性質(zhì)進(jìn)行求解
2024-07-28 03:16
【摘要】第四章三角形考點(diǎn)一線段的相關(guān)計算例1(2022·福建)已知A,B,C是數(shù)軸上的三個點(diǎn),且C在B的右側(cè).點(diǎn)A,B表示的數(shù)分別是1,3,如圖所示,若BC=2AB,則點(diǎn)C表示的數(shù)是.【分析】根據(jù)BC=2AB,且點(diǎn)C在B的右側(cè),以及A、B所表示的數(shù)可求得點(diǎn)C表示的數(shù).【自主解答
2024-07-30 17:03
【摘要】第四章三角形三角形及其性質(zhì)考點(diǎn)1三角形的分類陜西考點(diǎn)解讀三角形按邊的關(guān)系分類如下:三角形按邊的關(guān)系分類如下:陜西考點(diǎn)解讀等腰三角形中至少有兩邊相等,而等邊三角形的三邊都相等,所以等邊三角形是特殊的等腰三角形?!咎貏e提示】【提分必練】1∶2∶3,則這個三角形一定是(
2024-07-29 00:31
【摘要】第二節(jié)三角形及其性質(zhì)考點(diǎn)一三角形三條邊的關(guān)系例1(2022·福建A卷)下列各組數(shù)中,能作為一個三角形三邊邊長的是()A.1,1,2B.1,2,4C.2,3,4D.2,3,5【分析】根據(jù)三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊求解.【自主解
2024-07-26 21:56
【摘要】第三節(jié)特殊三角形考點(diǎn)一等腰三角形判定及性質(zhì)的相關(guān)計算例1(2022·漳州)如圖,在△ABC中,AB=AC=5,BC=8,D是線段BC上的動點(diǎn)(不含端點(diǎn)B,C),若線段AD長為正整數(shù),則點(diǎn)D的個數(shù)共有()A.5個B.4個C.3個D.2個【分析】根據(jù)等腰三角形三
2024-07-30 17:16
2024-07-27 01:08
2024-07-28 19:05
【摘要】第四章圖形的認(rèn)識19三角形與全等三角形目標(biāo)方向理解三角形及其內(nèi)角、外角、中線、高線、角平分線的概念;掌握三角形的三邊關(guān)系,三角形的內(nèi)角和定理及其推論;熟練掌握三角形全等的性質(zhì)與判定和三角形全等的證明,理解三角形全等不僅是解決幾何問題的重要工具,而且是中考的核心內(nèi)容.探索并理解三角形與相交線、平行線和其他多邊形之間的內(nèi)在聯(lián)系,在復(fù)習(xí)中逐步
2025-02-02 15:07