【摘要】第14講三角形與全等三角形考點(diǎn)三角形及其分類1.按邊分三邊都不相等的三角形三角形等腰三角形底邊和腰不相等的等腰三角形①。等邊三角形2.按角分②,
2025-06-18 00:15
2025-06-18 00:12
【摘要】第三節(jié)全等三角形考點(diǎn)一全等三角形的判定(5年2考)例1(2022·東營中考)如圖,在△ABC中,AB>AC,點(diǎn)D,E分別是邊AB,AC的中點(diǎn),點(diǎn)F在BC邊上,連接DE,DF,EF,則添加下列哪一個(gè)條件后,仍無法判斷△FCE與△EDF全等()A.∠A=∠DFEB.B
2025-06-13 03:43
【摘要】第四章三角形第20講解直角三角形01課后作業(yè)02能力提升目錄導(dǎo)航課后作業(yè)1.(2022德州)如圖,在4×4的正方形方格圖形中,小正方形的頂點(diǎn)稱為格點(diǎn),△ABC的頂點(diǎn)都在格點(diǎn)上,則∠BAC的正弦值是.55
2025-06-12 14:36
【摘要】第四節(jié)等腰三角形考點(diǎn)一等腰三角形的性質(zhì)與判定例1(2022·四川雅安中考)已知:如圖,在△ABC中,AB=AC,∠C=72°,BC=,以點(diǎn)B為圓心,BC為半徑畫弧,交AC于點(diǎn)D,則線段AD的長為()5【分析】根據(jù)等腰三角形的性質(zhì)和三角形外角的性質(zhì),得出AD=
2025-06-15 20:43
【摘要】《中考新導(dǎo)向初中總復(fù)習(xí)(數(shù)學(xué))》配套課件第四章三角形第17課三角形全等1.三角形全等的判定方法有:__________、__________、__________、__________,直角三角形全等的判定除以上的方法外還有__________.一、考點(diǎn)知識,2.全等三角形的性質(zhì):對應(yīng)邊___
2025-06-12 02:59
2025-06-20 19:54
【摘要】第五節(jié)解直角三角形及其應(yīng)用考點(diǎn)一解直角三角形的實(shí)際應(yīng)用命題角度?母子型例1(2022·河南)如圖所示,我國兩艘海監(jiān)船A,B在南海海域巡航,某一時(shí)刻,兩船同時(shí)收到指令,立即前往救援遇險(xiǎn)拋錨的漁船C,此時(shí)B船在A船的正南方向5海里處,A船測得漁船C在其南偏東45°方向,B船測得漁船C在其南
2025-06-15 21:42
2025-06-16 01:08
【摘要】第四章三角形第五節(jié)相似三角形考點(diǎn)相似三角形的判定及性質(zhì)百變例題6三邊對應(yīng)成比例的兩個(gè)三角形相似(2022·河北)若△ABC的每條邊長增加各自的10%得△A′B′C′,則∠B′的度數(shù)與其對應(yīng)角∠B的度數(shù)相比()A.增加了10%B.減少了10%C.
2025-06-21 06:05
2025-06-17 20:20
【摘要】第七節(jié)相似三角形考點(diǎn)一比例的有關(guān)概念與性質(zhì)(5年1考)例1(2022·嘉興中考)如圖,直線l1∥l2∥l3,直線AC交l1,l2,l3于點(diǎn)A,B,C;直線DF交l1,l2,l3于點(diǎn)D,E,F(xiàn),已知=,則=.ABAC13EFDE【
【摘要】第四節(jié)等腰三角形考點(diǎn)一等腰三角形的性質(zhì)與判定(5年3考)例1(2022·桂林中考)如圖,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,則圖中等腰三角形的個(gè)數(shù)是.【分析】首先根據(jù)已知條件分別計(jì)算圖中每一個(gè)三角形每個(gè)角的度數(shù),然后根據(jù)等角對等邊解答,做題時(shí)要注意,從
2025-06-19 15:17
【摘要】考點(diǎn)一全等三角形的判定(5年5考)例1(2022·濟(jì)寧中考)在△ABC中,點(diǎn)E,F(xiàn)分別是邊AB,AC的中點(diǎn),點(diǎn)D在BC邊上,連接DE,DF,EF,請你添加一個(gè)條件,使△BED與△FDE全等.【分析】根據(jù)三角形中位線定理得到EF∥BC,根據(jù)平行四邊形的判定定理、全等三角形的
2025-06-21 06:01
【摘要】單元思維導(dǎo)圖UNITFOUR第四單元三角形第17課時(shí)三角形與全等三角形考點(diǎn)一三角形中的重要線段課前雙基鞏固c1.[2017·長沙]一個(gè)三角形三個(gè)內(nèi)角的度數(shù)之比為1∶2∶3,則這個(gè)三角形一定是()A.銳角三角形B.直角三角形C.鈍角三
2025-06-14 20:06