【摘要】......圓錐曲線習(xí)題——雙曲線1.如果雙曲線=1上一點(diǎn)P到雙曲線右焦點(diǎn)的距離是2,那么點(diǎn)P到y(tǒng)軸的距離是()(A) (B) (C) (D)2.已知雙曲線C∶>0,b>0),以C的右焦點(diǎn)為圓心且與C的漸近線相切的圓的半
2024-08-03 15:22
【摘要】北師大版選修2-1第三章橢圓與雙曲線的離心率1、教材分析本節(jié)課是北師大版高中數(shù)學(xué)選修2-1第三章小專題橢圓與雙曲線的離心率。橢圓與雙曲線的離心率是本章的重點(diǎn)內(nèi)容,在學(xué)習(xí)本節(jié)知識(shí)前,學(xué)生已經(jīng)了解橢圓與雙曲線的概念、方程、基本性質(zhì)。求解橢圓、雙曲線的離心率是重點(diǎn)內(nèi)容。靈活運(yùn)用求解橢圓、雙曲線的離心率得幾種常用方法是本節(jié)的難點(diǎn)。2、學(xué)情分析本節(jié)是圓錐曲線與方程這
2025-06-04 04:22
【摘要】橢圓與雙曲線定義的應(yīng)用2.雙曲線的定義:平面內(nèi)與兩個(gè)定點(diǎn)12,FF的距離的差的絕對(duì)值等于常數(shù)(小于12FF)的點(diǎn)的軌跡叫做雙曲線.1.橢圓的定義:平面內(nèi)到兩個(gè)定點(diǎn)12,FF的距離的和等于常數(shù)(大于12FF)的點(diǎn)的軌跡叫橢圓.思考一:(課本54PB組第2題)
2025-01-12 00:53
【摘要】標(biāo)準(zhǔn)方程? 范圍?|x|≤a,|y|≤b對(duì)稱性?關(guān)于x軸、y軸成軸對(duì)稱;關(guān)于原點(diǎn)成中心對(duì)稱頂點(diǎn)坐標(biāo)?(a,0)、(-a,0)、(0,b)、(0,-b)焦點(diǎn)坐標(biāo)?(c,0)、(-c,0)半軸長(zhǎng)?長(zhǎng)半軸長(zhǎng)為a,短半軸長(zhǎng)為b.ab離心率?
2024-08-25 02:40
【摘要】......橢圓知識(shí)點(diǎn)【知識(shí)點(diǎn)1】橢圓的概念:在平面內(nèi)到兩定點(diǎn)F1、F2的距離的和等于常數(shù)(大于|F1F2|)的點(diǎn)的軌跡叫橢圓.這兩定點(diǎn)叫做橢圓的焦點(diǎn),兩焦點(diǎn)間的距離叫做焦距.當(dāng)動(dòng)點(diǎn)設(shè)為M時(shí),橢圓即為點(diǎn)集
2025-08-07 08:24
【摘要】橢圓與雙曲線的對(duì)偶性質(zhì)100條橢圓1.2.標(biāo)準(zhǔn)方程:3.4.點(diǎn)P處的切線PT平分△PF1F2在點(diǎn)P處的外角.5.PT平分△PF1F2在點(diǎn)P處的外角,則焦點(diǎn)在直線PT上的射影H點(diǎn)的軌跡是以長(zhǎng)軸為直徑的圓,除去長(zhǎng)軸的兩個(gè)端點(diǎn).6.以焦點(diǎn)弦PQ為直徑的圓必與對(duì)應(yīng)準(zhǔn)線相離.7.以焦點(diǎn)半徑PF1為直徑的圓必與以長(zhǎng)軸為直徑的圓內(nèi)切.8.設(shè)A1、A2為橢圓的左、右
2024-09-14 17:12
【摘要】......橢圓與雙曲線的必背的經(jīng)典結(jié)論橢圓1.點(diǎn)P處的切線PT平分△PF1F2在點(diǎn)P處的外角.2.PT平分△PF1F2在點(diǎn)P處的外角,則焦點(diǎn)在直線PT上的射影H點(diǎn)的軌跡是以長(zhǎng)軸為直徑的圓,除去長(zhǎng)軸的兩個(gè)端
2025-08-07 08:28
【摘要】橢圓與雙曲線中點(diǎn)弦斜率公式及其推論尤溪文公高級(jí)中學(xué)鄭明淮,.定理1(橢圓中點(diǎn)弦的斜率公式):設(shè)為橢圓弦(不平行軸)的中點(diǎn),則有:證明:設(shè),,則有,兩式相減得:整理得:,即,因?yàn)槭窍业闹悬c(diǎn),所以,所以定理2(雙曲線中點(diǎn)弦的斜率公式):設(shè)為雙曲線弦(不平行軸)的中點(diǎn),則有證明:設(shè),,則有,兩式相減得:整理得:,即,因?yàn)槭窍业闹悬c(diǎn),所以,所以例1、已知橢圓
【摘要】?jī)啥c(diǎn)F1、F2(|F1F2|=2c)和的距離的等于常數(shù)2a(2a|F1F2|=2c0)的點(diǎn)的軌跡.平面內(nèi)與1.橢圓的定義2.雙曲線的定義平面內(nèi)與兩定點(diǎn)F1、F2(|F1F2|=2c)的距離的差的絕對(duì)值等于常數(shù)2a(2a|F1F2|=2c0)?的點(diǎn)軌跡
2025-01-27 16:52
【摘要】圓錐曲線:圓、橢圓、拋物線,雙曲線。拋物線及其標(biāo)準(zhǔn)方程二次函數(shù))0(2????acbxaxy的圖象(示意圖)?拋物線xyoxoy同學(xué)們生活學(xué)習(xí)中見過拋物線的實(shí)例有哪些?噴泉探照燈的燈面平面內(nèi)與一個(gè)定點(diǎn)F和一條定直線l(l不過點(diǎn)F)的距離相等的點(diǎn)
2024-12-20 18:08
【摘要】橢圓典型例題一、已知橢圓焦點(diǎn)的位置,求橢圓的標(biāo)準(zhǔn)方程。例1:已知橢圓的焦點(diǎn)是F1(0,-1)、F2(0,1),P是橢圓上一點(diǎn),并且PF1+PF2=2F1F2,求橢圓的標(biāo)準(zhǔn)方程。解:由PF1+PF2=2F1F2=2×2=4,得2a==1,所以b2=3.所以橢圓的標(biāo)準(zhǔn)方程是+=1.2.已知橢圓的兩個(gè)焦點(diǎn)為F1(-1,0),F(xiàn)2(1,0),且2a=10,求橢圓的標(biāo)準(zhǔn)方程
2025-05-12 04:50
【摘要】圓錐曲線測(cè)試題一、選擇題(共12題,每題5分)1已知橢圓的兩個(gè)焦點(diǎn)為、,且,弦AB過點(diǎn),則△的周長(zhǎng)為()(A)10(B)20(C)2(D)2橢圓上的點(diǎn)P到它的左準(zhǔn)線的距離是10,那么點(diǎn)P到它的右焦點(diǎn)的距離是()(A)15(B)12(C)10(D)83橢圓的焦點(diǎn)、,P為橢圓上的一點(diǎn),已知,則△的面積為()(A)9(B)12(C
2025-08-07 08:50
【摘要】1第八章圓錐曲線方程第講(第一課時(shí))2考點(diǎn)搜索●雙曲線的第一、第二定義,焦點(diǎn)在x軸、y軸上的標(biāo)準(zhǔn)方程●雙曲線的范圍、對(duì)稱性、頂點(diǎn)、焦點(diǎn)、離心率、準(zhǔn)線、漸近線、焦半徑等基本性質(zhì)高考猜想1.求雙曲線的標(biāo)準(zhǔn)方程,以及基本量的求解.2.以直線與雙曲線為背景,求
2024-11-01 08:57
【摘要】第2講橢圓、雙曲線、拋物線、標(biāo)準(zhǔn)方程與幾何性質(zhì)名稱橢圓雙曲線拋物線定義|PF1|+|PF2|=2a(2a|F1F2|)|PF|=點(diǎn)F不
2025-06-18 02:17
【摘要】雙曲線知識(shí)點(diǎn)一、雙曲線的定義:1.第一定義:到兩個(gè)定點(diǎn)F1與F2的距離之差的絕對(duì)值等于定長(zhǎng)(<|F1F2|)的點(diǎn)的軌跡((為常數(shù)))這兩個(gè)定點(diǎn)叫雙曲線的焦點(diǎn).要注意兩點(diǎn):(1)距離之差的絕對(duì)值.(2)2a<|F1F2|.當(dāng)|MF1|-
2024-09-04 00:12