【摘要】高考立體幾何大題及答案1.(2009全國卷Ⅰ文)如圖,四棱錐中,底面為矩形,底面,,,點在側(cè)棱上,。(I)證明:是側(cè)棱的中點;求二面角的大小。2.(2009全國卷Ⅱ文)如圖,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分別為AA1、B1C的中點,DE⊥平面BCC1(Ⅰ)證明:AB=AC(Ⅱ)設(shè)二面
2024-08-06 05:02
【摘要】高考立體幾何大題及答案1.(2009全國卷Ⅰ文)如圖,四棱錐中,底面為矩形,底面,,,點在側(cè)棱上,。(I)證明:是側(cè)棱的中點;求二面角的大小。2.(2009全國卷Ⅱ文)如圖,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分別為AA1、B1C的中點,DE⊥平面BCC1(Ⅰ)證明:AB=AC(Ⅱ)設(shè)
2024-08-06 04:58
【摘要】,四棱錐中,底面為矩形,底面,,,點在側(cè)棱上,。(I)證明:是側(cè)棱的中點;求二面角的大小。,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分別為AA1、B1C的中點,DE⊥平面BCC1(Ⅰ)證明:AB=AC(Ⅱ)設(shè)二面角A-BACBA1B1C1DED-C為60
2024-08-06 04:57
【摘要】立體幾何大題練習(文科):1.如圖,在四棱錐S﹣ABCD中,底面ABCD是梯形,AB∥DC,∠ABC=90°,AD=SD,BC=CD=,側(cè)面SAD⊥底面ABCD.(1)求證:平面SBD⊥平面SAD;(2)若∠SDA=120°,且三棱錐S﹣BCD的體積為,求側(cè)面△SAB的面積.【分析】(1)由梯形ABCD,設(shè)BC=a,則CD=a,AB=2a,運用
2024-09-03 12:10
【摘要】立體幾何練習題1.四棱錐中,底面為平行四邊形,側(cè)面面,已知,,,.(1)設(shè)平面與平面的交線為,求證:;(2)求證:;(3)求直線與面所成角的正弦值.2.如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,,AD=AC=1,O為AC的中點,PO平面ABCD,PO=2,M為PD的中點。(1)證明:PB//平面ACM;(2)證明:AD平面PAC
2025-05-12 06:43
【摘要】立體幾何大題20道1、(17年浙江)如圖,已知四棱錐P-ABCD,△PAD是以AD為斜邊的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E為PD的中點.(I)證明:CE∥平面PAB;(II)求直線CE與平面PBC所成角的正弦值2、(17新課標3)如圖,四面體ABCD中,△ABC是正三角形,AD=CD.(1)證明:AC⊥BD;(2)已知△ACD是直
【摘要】專業(yè)整理分享文科立體幾何大題復習 一.解答題(共12小題)1.如圖1,在正方形ABCD中,點,E,F(xiàn)分別是AB,BC的中點,BD與EF交于點H,點G,R分別在線段DH,HB上,且.將△AED,△CFD,△BEF分別沿DE,DF,EF折起,使點A,B,C重合于點P,如圖2所示.
2025-06-04 01:27
【摘要】WORD格式整理高考立體幾何大題及答案1.(2009全國卷Ⅰ文)如圖,四棱錐中,底面為矩形,底面,,,點在側(cè)棱上,。(I)證明:是側(cè)棱的中點;求二面角的大小。2.(2009全國卷Ⅱ文)如圖,直三棱柱AB
【摘要】大成培訓立體幾何強化訓練,在四面體ABCD中,CB=CD,AD⊥BD,點E,F分別是AB,BD的中點.求證:(Ⅰ)直線EF∥平面ACD;(Ⅱ)平面EFC⊥平面BCD.,在直三棱柱ABC-A1B1C1中,E、F分別是A1B、A1C的中點,點D在B1C1上,A
2025-05-22 05:14
【摘要】高中數(shù)學立體幾何大題訓練,在長方體中,AB=AD=1,AA1=2,M是棱CC1的中點(Ⅰ)求異面直線A1M和C1D1所成的角的正切值;(Ⅱ)證明:平面ABM⊥平面A1B1M1,在矩形中,點分別在線段上,.沿直線將翻折成,使平面.(Ⅰ)求二面角的余弦值;(Ⅱ)點分別在線段上,若沿直線將四邊形向上翻折,使與重合,求線段的長。,直三棱柱中
【摘要】《立體幾何》專題練習題1.如圖正方體中,E、F分別為D1C1和B1C1的中點,P、Q分別為A1C1與EF、AC與BD的交點,(1)求證:D、B、F、E四點共面;(2)若A1C與面DBFE交于點R,求證:P、Q、R三點共線2.已知直線、異面,平面過且平行于,平面過且平行于,求證:∥.FECByZ
2025-06-04 13:06
【摘要】立體幾何綜合大題(理科)40道及答案1、四棱錐中,⊥底面,,,.(Ⅰ)求證:⊥平面;(Ⅱ)若側(cè)棱上的點滿足,求三棱錐的體積?!敬鸢浮?Ⅰ)證明:因為BC=CD,即為等腰三角形,又,故.因為底面,所以,從而與平面內(nèi)兩條相交直線都垂直,故⊥平面。(Ⅱ)解:.由底面知.由得三棱錐的高為,故:2、如圖,四棱錐中,四邊形為矩形,為等腰三角
2025-05-12 06:44
【摘要】第一篇:立體幾何證明大題 立體幾何證明大題 1.如圖,四面體ABCD中,AD^平面BCD,E、F分別為AD、AC的中點,BC^CD.求證:(1)EF//平面BCD(2)BC^平面ACD. 2、如...
2024-11-12 13:02
【摘要】ABCDEFPM..1、如圖,正方形所在平面與平面四邊形所在平面互相垂直,△是等腰直角三角形,(1)線段的中點為,線段的中點為,求證:;(2)求直線與平面所成角的正切值.解:(1)取的中點為,連,,則,面//面,………………………5分(2)先證出面,
2025-08-09 01:32
【摘要】分享智慧泉源智愛學習傳揚愛心喜樂Wisdom&Love第1頁(共32頁)2022年2月5日星期六立體幾何1.平面平面的基本性質(zhì):掌握三個公理及推論
2025-02-26 14:36