【摘要】§2離散型隨機(jī)變量研究一個(gè)離散型隨機(jī)變量不僅要知道它可能取值而且要知道它取每一個(gè)可能值的概率.一.概率分布:設(shè)離散型隨機(jī)變量的可能取值是有限個(gè)或可數(shù)個(gè)值,設(shè)的可能取值: 為了完全描述隨機(jī)變量,只知道X的可能取值是很不夠的,還必須知道取各種值的概率,也就是說要知道下列一串概率的值: 記 ,將的可能取值及相應(yīng)的既率成下表
2025-08-04 21:14
【摘要】第九節(jié)離散型隨機(jī)變量的均值與方差、正態(tài)分布高考成功方案第一步高考成功方案第二步高考成功方案第三步高考成功方案第四步第十章計(jì)數(shù)原理、概率、隨機(jī)變量及分布列返回考綱點(diǎn)擊1.理解取有限個(gè)值的離散型隨機(jī)變量均值、方
2025-06-17 03:54
【摘要】導(dǎo)入新課(1)離散型隨機(jī)變量的分布列:復(fù)習(xí)回顧Xx1x2…xi…Pp1p2…pi…(2)離散型隨機(jī)變量分布列的性質(zhì):①pi≥0,i=1,2,…;②p1+p2+…+pi+…=1.對于離散型隨機(jī)變量,可以由它的概率分布列確定與該隨機(jī)變量相關(guān)事件的概率.但在實(shí)際
2025-06-26 22:37
【摘要】某商場為滿足市場需求要將單價(jià)分別為18元/kg,24元/kg,36元/kg的3種糖果按3:2:1的比例混合銷售,其中混合糖果中每一顆糖果的質(zhì)量都相等,如何對混合糖果定價(jià)才合理?2618+24+363?定價(jià)為可以嗎?18×1/2+24×1/3+36×1/6
2025-01-13 02:15
【摘要】量的均值高二數(shù)學(xué)選修2-3一、復(fù)習(xí)回顧1、離散型隨機(jī)變量的分布列XP1xix2x······1p2pip······2、離散型隨機(jī)變量分布列的性質(zhì):(1)pi≥0,i=1,2,
2025-02-02 14:42
【摘要】1北京市中小學(xué)“京教杯”青年教師教學(xué)設(shè)計(jì)大賽教學(xué)設(shè)計(jì)參與人員姓名單位聯(lián)系方式設(shè)計(jì)者徐丹丹北京市第八中學(xué)大興分校18601027850實(shí)施者徐丹丹北京市第八中學(xué)大興分校18601027850指導(dǎo)者楊林軍北京市大興區(qū)教師進(jìn)修學(xué)校13241934602程
2025-02-01 09:55
【摘要】第九節(jié)離散型隨機(jī)變量的均值與方差、正態(tài)分布抓基礎(chǔ)明考向提能力教你一招我來演練第十章計(jì)數(shù)原理、概率、隨機(jī)變量及其分布返回[備考方向要明了]考什么、方差的概念,會
2025-07-16 06:45
【摘要】例1:某保險(xiǎn)公司新開設(shè)了一項(xiàng)保險(xiǎn)業(yè)務(wù),若在一年內(nèi)事件E發(fā)生,該公司要賠償a元.設(shè)在一年內(nèi)E發(fā)生的概率為p,為使公司收益的期望值等于a的10%,公司應(yīng)要求顧客交多少保險(xiǎn)金?例2:將一枚硬幣拋擲20次,求正面次數(shù)與反面次數(shù)之差?的概率分布,并求出?的期望E?與方差D?.例3(07全國高考)某商場經(jīng)銷某商品,根據(jù)以往資料統(tǒng)計(jì),顧客
2024-12-03 20:03
【摘要】離散型隨機(jī)變量的均值1、什么叫n次獨(dú)立重復(fù)試驗(yàn)?一.復(fù)習(xí)其中0<p<1,p+q=1,k=0,1,2,...,nP(X=k)=pkqn-kCkn則稱X服從參數(shù)為n,p的二項(xiàng)分布,記作X~B(n,p)一般地,由n次試驗(yàn)構(gòu)成,且每次試驗(yàn)互相獨(dú)立完成,每次試驗(yàn)的結(jié)果僅有兩種對立的狀態(tài),即A與,每次試驗(yàn)中P(A)
2025-01-21 08:45
【摘要】?第二節(jié)離散型隨機(jī)變量的期望與方差考綱點(diǎn)擊值、方差的意義.布列求出期望值、方差.熱點(diǎn)提示題的形式考查期望、方差在實(shí)際生活中的應(yīng)用.的關(guān)鍵.1.期望(1)若離散型隨機(jī)變量ξ的概率分布列為ξx1x2?xn?Pp1p
2025-01-13 00:24
【摘要】1.均值(1)若離散型隨機(jī)變量X的分布列為基礎(chǔ)知識梳理Xx1x2…xi…xnPp1p2…pi…pn則稱EX=為隨機(jī)變量X的均值或數(shù)學(xué)期望,它反映了離散型隨機(jī)變量取值的.(2)若Y=aX+b,其中a,b為常數(shù),則
2025-01-12 04:34
【摘要】1§離散型隨機(jī)變量§隨機(jī)變量的概念§超幾何分布·二項(xiàng)分布·泊松分布?2,1)()(???ixpxXPii1.“0-1”分布(兩點(diǎn)分布)3.二項(xiàng)分布),(~pnBX)(xPnx
2024-08-27 19:19
【摘要】Chapter2(1)離散型隨機(jī)變量的概率分布,隨機(jī)變量的分布函數(shù)教學(xué)要求:1.理解隨機(jī)變量的概念;2.理解離散型隨機(jī)變量的分布律及性質(zhì);3.掌握二項(xiàng)分布、泊松分布;4.會應(yīng)用概率分布計(jì)算有關(guān)事件的概率;5.理解隨機(jī)變量分布函數(shù)的概念及性質(zhì)..隨機(jī)變量一.分布離散型隨機(jī)變量的概率二
2025-01-25 11:26
【摘要】ξ可取-1,0,1(且ξ為離散型隨機(jī)變量)解:設(shè)黃球的個(gè)數(shù)為n,依題意知道綠球個(gè)數(shù)為2n,紅球個(gè)數(shù)為4n,盒中球的總數(shù)為7n。p10-1(2)并分別求這三種情況下的概率例1一盒中放有大小相同的紅色、綠色、黃色三種小球,已知紅球個(gè)數(shù)是綠球個(gè)數(shù)的兩倍,黃球個(gè)數(shù)是綠球的一半,現(xiàn)從該盒中隨機(jī)取出一個(gè)球,
2025-01-12 12:29
【摘要】數(shù)學(xué)導(dǎo)學(xué)案課題:離散型隨機(jī)變量的分布列編號:58時(shí)間:第2周命制人:高婷婷班級:姓名: 裝訂線
2025-07-25 21:59