【摘要】函數(shù)的單調(diào)性和奇偶性(一)閱讀課本P58-P59,回答下列問(wèn)題1、增函數(shù),減函數(shù)的定義;2、單調(diào)性,單調(diào)區(qū)間的定義.3、函數(shù)圖象如下圖,說(shuō)出單調(diào)區(qū)間及其單調(diào)性.xy練習(xí)一1、求下列函數(shù)的單調(diào)區(qū)間(1)f(x)=x-1;(2)f(x)=-2x+3;(3)f(x)=2x2-x+2(4)f(x)=-x2-
2024-09-25 20:29
【摘要】凹凸個(gè)性教育給你未來(lái)的方向 函數(shù)的定義域、值域、單調(diào)性、奇偶性、對(duì)稱性、 反函數(shù)、伸縮平移變換、零點(diǎn)問(wèn)題知識(shí)點(diǎn)大全 1、函數(shù)的定義域 1、求函數(shù)定義域的主要依據(jù): (1)分式的分母不為零; ...
2024-11-19 04:24
2025-01-09 20:13
【摘要】函數(shù)的性質(zhì)的運(yùn)用1.若函數(shù)是奇函數(shù),則下列坐標(biāo)表示的點(diǎn)一定在函數(shù)圖象上的是()A.B.C.D.2.已知函數(shù)是奇函數(shù),則的值為()A.B.C.D.3.已知f(x)是偶函數(shù),g(x)是奇函數(shù),若,則f(x)的解析式為_(kāi)______.4.已知函數(shù)f(x)為偶函數(shù),且其圖象與x軸有四個(gè)交點(diǎn),
2025-05-11 12:16
【摘要】(一)課型:新授課教學(xué)目標(biāo):(1)知識(shí)與能力:理解增函數(shù)、減函數(shù)、單調(diào)區(qū)間、單調(diào)性等概念,掌握增(減)函數(shù)的證明和判別,學(xué)會(huì)運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì)。(2)過(guò)程與方法:引導(dǎo)學(xué)生通過(guò)觀察,歸納,抽象,概括自主構(gòu)建單調(diào)性的概念,使學(xué)生領(lǐng)會(huì)數(shù)形結(jié)合的思想方法。(3)情感,態(tài)度,價(jià)值觀:培養(yǎng)學(xué)生主動(dòng)探索,敢于創(chuàng)新的意識(shí)和精神,使學(xué)生理性思考生活中的增長(zhǎng)和遞減的現(xiàn)象。
2024-09-04 05:18
【摘要】典型例題函數(shù)的單調(diào)性和奇偶性例1?(1)畫出函數(shù)y=-x2+2|x|+3的圖像,并指出函數(shù)的單調(diào)區(qū)間.解:函數(shù)圖像如下圖所示,當(dāng)x≥0時(shí),y=-x2+2x+3=-(x-1)2+4;當(dāng)x<0時(shí),y=-x2-2x+3=-(x+1)2+4.在(-∞,-1]和[0,1]上,函數(shù)是增函數(shù):在[-1,0]和[1,+∞)上,函數(shù)是減函數(shù).評(píng)析?函數(shù)單調(diào)性是對(duì)某個(gè)
2025-05-11 12:17
【摘要】復(fù)合函數(shù)的單調(diào)性和奇偶性 1、復(fù)合函數(shù)的概念 如果是的函數(shù),又是的函數(shù),即,,那么關(guān)于的函數(shù)叫做函數(shù)和的復(fù)合函數(shù),其中是中間變量,自變量為函數(shù)值為?!±纾汉瘮?shù)是由和復(fù)合而成。2、復(fù)合函數(shù)單調(diào)性復(fù)合函數(shù)單調(diào)性判定方法:定理:設(shè)函數(shù)u=g(x)在區(qū)間M上有意義,函數(shù)y=f(u)在區(qū)間N上有意義,且當(dāng)X∈M時(shí),u∈N。增函數(shù)增函數(shù)增函數(shù)增函
2025-05-22 04:22
【摘要】★★★★★小學(xué)/初中/高中個(gè)性化輔導(dǎo)專家個(gè)性化學(xué)科優(yōu)化學(xué)案輔導(dǎo)科目數(shù)學(xué)就讀年級(jí)學(xué)生教師姓名徐亞課題函數(shù)的概念授課時(shí)間2015年11月28備課時(shí)間2015年11月25日教學(xué)目標(biāo)1、理解函數(shù)的概念,明確確定函數(shù)的三個(gè)要素,
2025-07-03 04:12
【摘要】函數(shù)奇偶性練習(xí)題(一)精典例題(1) (2)(3) (4)(4) (6)(7) (8)2.求下列函數(shù)中的參數(shù)(1)若是奇函數(shù),則___(2)設(shè)函數(shù),是偶函數(shù),則實(shí)數(shù)(3)若是偶函數(shù),則可以是(寫出一組),且有,求證:且為偶函數(shù)。,且當(dāng)時(shí),,則的解析式為_(kāi)___,,當(dāng)時(shí),為增
2025-05-13 05:39
【摘要】 函數(shù)的單調(diào)性和奇偶性一、目標(biāo)認(rèn)知學(xué)習(xí)目標(biāo): 、奇偶性定義; 、證明函數(shù)在給定區(qū)間上的單調(diào)性; ; .重點(diǎn)、難點(diǎn): ??; .二、知識(shí)要點(diǎn)梳理 (1)增函數(shù)、減函數(shù)的概念 一般地,設(shè)函數(shù)f(x)的定義域?yàn)锳,區(qū)間 如果對(duì)于M內(nèi)的任意兩個(gè)自變量的值x1、x2,當(dāng)x1<x2時(shí),都
2024-09-15 02:38
【摘要】正弦、余弦函數(shù)的性質(zhì)X(奇偶性、單調(diào)性)正弦、余弦函數(shù)的圖象x6?yo-?-12?3?4?5?-2?-3?-4?1?y=sinx(x?R)x6?o-?-12?3?4?5?-2?-3?-4?1?yy=cosx(x?R)
2025-01-13 03:01
【摘要】數(shù)學(xué)高中數(shù)學(xué)必修1第二章函數(shù)單調(diào)性和奇偶性專項(xiàng)練習(xí)一、函數(shù)單調(diào)性相關(guān)練習(xí)題1、(1)函數(shù),{0,1,2,4}的最大值為_(kāi)____.(2)函數(shù)在區(qū)間[1,5]上的最大值為_(kāi)____,最小值為_(kāi)____.2、利用單調(diào)性的定義證明函數(shù)在(-∞,0)上是增函數(shù).3、判斷函數(shù)在(-1,+∞)上的單調(diào)性,并給予證明.4、畫出函數(shù)的圖像,并指出函數(shù)的單調(diào)區(qū)間.5、已
2024-08-02 01:09
【摘要】1函數(shù)的單調(diào)性與奇偶性講義一,目的要求:(1)理解函數(shù)單調(diào)性的概念,掌握用定義的方法來(lái)判斷函數(shù)在給定區(qū)間內(nèi)的增減性。(2)理解函數(shù)奇偶性的概念,掌握奇偶函數(shù)的性質(zhì)。(3)結(jié)合函數(shù)的單調(diào)性和奇偶性,掌握類似判斷函數(shù)值大小等各類綜合運(yùn)用問(wèn)題。二,知識(shí)要點(diǎn):(1)函數(shù)的單調(diào)性設(shè)函數(shù)的定義域?yàn)?,區(qū)間。如果對(duì)于上任意的兩點(diǎn)及,當(dāng)()fxDI?I1x2時(shí),不等
2024-09-14 14:15
【摘要】函數(shù)單調(diào)性與奇偶性經(jīng)典例題透析(一)講課人:張海青授課時(shí)間:2014年9月23日授課地點(diǎn):教學(xué)樓二樓多媒體(二)授課對(duì)象:高三文科優(yōu)生授課過(guò)程:類型一、函數(shù)的單調(diào)性的證明 1.證明函數(shù)上的單調(diào)性. 證明:在(0,+∞)上任取x1、x2(x1≠x2),令△x=x2-x10 則 ∵x10,x20,∴
2025-03-04 01:19
【摘要】函數(shù)的奇偶性與單調(diào)性(首先定義域必須關(guān)于原點(diǎn)對(duì)稱)(1)為奇函數(shù);為偶函數(shù);(2)奇函數(shù)在原點(diǎn)有定義(3)任一個(gè)定義域關(guān)于原點(diǎn)對(duì)稱的函數(shù)一定可以表示成一個(gè)奇函數(shù)和一個(gè)偶函數(shù)之和???即(奇)(偶).?(注:①先確定定義域;②單調(diào)性證明一定要用定義)?(1)定義:區(qū)間上任意兩個(gè)值,若時(shí)有,稱為上增函數(shù),若時(shí)有,稱為上
2025-07-03 01:41