【摘要】函數(shù)單調(diào)性奇偶性經(jīng)典練習(xí)一、單調(diào)性題型高考中函數(shù)單調(diào)性在高中函數(shù)知識(shí)模塊里面主要作為工具或條件使用,也有很多題會(huì)以判斷單調(diào)性單獨(dú)出題或有的題會(huì)要求先判斷函數(shù)單調(diào)性才能進(jìn)行下一步驟解答,另有部分以函數(shù)單調(diào)性質(zhì)的運(yùn)用為主.(一)函數(shù)單調(diào)性的判斷函數(shù)單調(diào)性判斷常用方法:例1證明函數(shù)在區(qū)間上為減函數(shù)(定義法)解析:用定義法證明函數(shù)的單調(diào)性,按步驟“一假設(shè)、二作差、三判斷(
2025-05-11 12:16
【摘要】函數(shù)單調(diào)性和奇偶性一、選擇題(每小題5分,一共12道小題,總分60分)1.命題“若都是偶數(shù),則也是偶數(shù)”的逆否命題是()A.若不是偶數(shù),則與都不是偶數(shù)B.若是偶數(shù),則與不都是偶數(shù)C.若是偶數(shù),則與都不是偶數(shù)D.若不是偶數(shù),則與不都是偶數(shù)2.下列函數(shù)是偶函數(shù)的是()A.B.C.D.3.下列函數(shù)中,在其定
【摘要】 函數(shù)的單調(diào)性和奇偶性一、目標(biāo)認(rèn)知學(xué)習(xí)目標(biāo): 、奇偶性定義; 、證明函數(shù)在給定區(qū)間上的單調(diào)性; ??; .重點(diǎn)、難點(diǎn): ??; .二、知識(shí)要點(diǎn)梳理 (1)增函數(shù)、減函數(shù)的概念 一般地,設(shè)函數(shù)f(x)的定義域?yàn)锳,區(qū)間 如果對(duì)于M內(nèi)的任意兩個(gè)自變量的值x1、x2,當(dāng)x1<x2時(shí),都
2024-09-15 02:38
【摘要】高中數(shù)學(xué)必修1對(duì)數(shù)函數(shù)(3)單調(diào)性與奇偶性新課、復(fù)合函數(shù)單調(diào)性問(wèn)題1)(xf)(xg)]([)]([xfgxgf或求下列函數(shù)的單調(diào)區(qū)間)1(2log)1(??xy)1(21log)2(??xy)23(22log)3(???xxy)32(212lo
2024-07-11 02:15
【摘要】函數(shù)的奇偶性與單調(diào)性(首先定義域必須關(guān)于原點(diǎn)對(duì)稱)(1)為奇函數(shù);為偶函數(shù);(2)奇函數(shù)在原點(diǎn)有定義(3)任一個(gè)定義域關(guān)于原點(diǎn)對(duì)稱的函數(shù)一定可以表示成一個(gè)奇函數(shù)和一個(gè)偶函數(shù)之和???即(奇)(偶).?(注:①先確定定義域;②單調(diào)性證明一定要用定義)?(1)定義:區(qū)間上任意兩個(gè)值,若時(shí)有,稱為上增函數(shù),若時(shí)有,稱為上
2025-07-03 01:41
【摘要】(一)課型:新授課教學(xué)目標(biāo):(1)知識(shí)與能力:理解增函數(shù)、減函數(shù)、單調(diào)區(qū)間、單調(diào)性等概念,掌握增(減)函數(shù)的證明和判別,學(xué)會(huì)運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì)。(2)過(guò)程與方法:引導(dǎo)學(xué)生通過(guò)觀察,歸納,抽象,概括自主構(gòu)建單調(diào)性的概念,使學(xué)生領(lǐng)會(huì)數(shù)形結(jié)合的思想方法。(3)情感,態(tài)度,價(jià)值觀:培養(yǎng)學(xué)生主動(dòng)探索,敢于創(chuàng)新的意識(shí)和精神,使學(xué)生理性思考生活中的增長(zhǎng)和遞減的現(xiàn)象。
2024-09-04 05:18
【摘要】1函數(shù)的單調(diào)性與奇偶性講義一,目的要求:(1)理解函數(shù)單調(diào)性的概念,掌握用定義的方法來(lái)判斷函數(shù)在給定區(qū)間內(nèi)的增減性。(2)理解函數(shù)奇偶性的概念,掌握奇偶函數(shù)的性質(zhì)。(3)結(jié)合函數(shù)的單調(diào)性和奇偶性,掌握類似判斷函數(shù)值大小等各類綜合運(yùn)用問(wèn)題。二,知識(shí)要點(diǎn):(1)函數(shù)的單調(diào)性設(shè)函數(shù)的定義域?yàn)?,區(qū)間。如果對(duì)于上任意的兩點(diǎn)及,當(dāng)()fxDI?I1x2時(shí),不等
2024-09-14 14:15
【摘要】函數(shù)單調(diào)性與奇偶性經(jīng)典例題透析(一)講課人:張海青授課時(shí)間:2014年9月23日授課地點(diǎn):教學(xué)樓二樓多媒體(二)授課對(duì)象:高三文科優(yōu)生授課過(guò)程:類型一、函數(shù)的單調(diào)性的證明 1.證明函數(shù)上的單調(diào)性. 證明:在(0,+∞)上任取x1、x2(x1≠x2),令△x=x2-x10 則 ∵x10,x20,∴
2025-03-04 01:19
【摘要】復(fù)合函數(shù)的單調(diào)性和奇偶性 1、復(fù)合函數(shù)的概念 如果是的函數(shù),又是的函數(shù),即,,那么關(guān)于的函數(shù)叫做函數(shù)和的復(fù)合函數(shù),其中是中間變量,自變量為函數(shù)值為?!±纾汉瘮?shù)是由和復(fù)合而成。2、復(fù)合函數(shù)單調(diào)性復(fù)合函數(shù)單調(diào)性判定方法:定理:設(shè)函數(shù)u=g(x)在區(qū)間M上有意義,函數(shù)y=f(u)在區(qū)間N上有意義,且當(dāng)X∈M時(shí),u∈N。增函數(shù)增函數(shù)增函數(shù)增函
2025-05-22 04:22
【摘要】函數(shù)單調(diào)性、奇偶性練習(xí)一、選擇題1.若函數(shù)f(x)=x(x∈R),則函數(shù)y=-f(x)在其定義域內(nèi)是( )A.單調(diào)遞增的偶函數(shù) B.單調(diào)遞增的奇函數(shù)C.單調(diào)遞減的偶函數(shù) D.單調(diào)遞減的奇函數(shù)2.下列函數(shù)中是奇函數(shù)且在(0,1)上遞增的函數(shù)是( )A.f(x)=x+ B.f(x)=x2-C.f(x)= D.f(x)=x33.已知y=f(x)是定義在
2024-07-29 20:37
【摘要】函數(shù)的單調(diào)性與奇偶性1.若為偶函數(shù),則下列點(diǎn)的坐標(biāo)在函數(shù)圖像上的是A.B.C.D.2.下列函數(shù)中,在區(qū)間(0,1)上是增函數(shù)的是A.B.C.3.下列判斷中正確的是
2025-05-11 12:17
【摘要】正弦、余弦函數(shù)的性質(zhì)X制作:楊同官(奇偶性、單調(diào)性)正弦、余弦函數(shù)的圖像和性質(zhì)y=sinx(x?R)x6?yo-?-12?3?4?5?-2?-3?-4?1?x6?o-?-12?3?4?5?-2?-3?-4?1?yy=cos
2025-01-20 17:25
【摘要】函數(shù)的單調(diào)性、奇偶性基礎(chǔ)卷選擇題1.若函數(shù)是奇函數(shù),則m的取值是( ) 2.已知函數(shù)y=f(x)在(-3,0)上是減函數(shù),又y=f(x-3)是偶函數(shù),則下列結(jié)論正確的是(?。〢.
2024-09-14 16:22
【摘要】 奇偶性與單調(diào)性及典型例題 函數(shù)的單調(diào)性、奇偶性是高考的重點(diǎn)內(nèi)容之一,、單調(diào)性的定義,掌握判定方法,正確認(rèn)識(shí)單調(diào)函數(shù)與奇偶函數(shù)的圖象. 難點(diǎn)磁場(chǎng) (★★★★)設(shè)a0,f(x)=是R上的偶函數(shù),(1)求a的值;(2)證明:f(x)在(0,+∞)上是增函數(shù). 案例探究 ?。劾?]已知函數(shù)f(x)在(-1,1)上有定義,f()=-1,當(dāng)且僅當(dāng)0
2025-05-12 00:27
【摘要】百度搜索李蕭蕭文檔百度搜索李蕭蕭文檔難點(diǎn)8奇偶性與單調(diào)性(二)函數(shù)的單調(diào)性、奇偶性是高考的重點(diǎn)和熱點(diǎn)內(nèi)容之一,特別是兩性質(zhì)的應(yīng)用更加突出.本節(jié)主要幫助考生學(xué)會(huì)怎樣利用兩性質(zhì)解題,掌握基本方法,形成應(yīng)用意識(shí).●難點(diǎn)磁場(chǎng)(★★★★★)已知偶函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(2)=0,解不等式f[log2(x
2024-10-26 13:54