【摘要】勾股定理及其逆定理的應(yīng)用常見題型利用勾股定理求線段長1.如圖,在等腰直角三角形ABC中,∠ABC=90°,D為AC邊的中點(diǎn),過D點(diǎn)作DE⊥DF,交AB于E,交BC于F,若AE=4,F(xiàn)C=3,求EF的長.(注:直角三角形斜邊上的中線等于斜邊的一半)利用勾股定理求面積2.如圖,長方形紙片ABCD沿對(duì)角線AC折疊,設(shè)點(diǎn)D落在D′處,BC交AD′于點(diǎn)
2025-05-11 12:59
【摘要】勾股定理復(fù)習(xí)一、要點(diǎn)精練(一)勾股定理1、(填空題)已知在Rt△ABC中,∠C=90°。①若a=3,b=4,則c=________;②若a=40,b=9,則c=________;③若a=6,c=10,則b=_______;④若c=25,b=15,則a=________。2、(填空題)已知在Rt△ABC中,∠C=90°,AB=10。①若∠A=30
2025-06-03 23:55
【摘要】(一)勾股定理1:勾股定理如果直角三角形的兩條直角邊長分別為a、b,斜邊長為c,那么a2+b2=c2我國古代學(xué)者把直角三角形較短的直角邊稱為“勾”,較長的直角邊稱為“股”,斜邊稱為“弦”.要點(diǎn)詮釋:2、勾股定理反映了直角三角形三邊之間的關(guān)系,是直角三角形的重要性質(zhì)之一,其主要應(yīng)用:(1)已知直角三角形的兩邊求第三邊(在中,,則,,)(2)已知直角三角
2025-05-11 13:00
【摘要】與直角有關(guān)的折疊問題(一),將矩形ABCD的四個(gè)角向內(nèi)折起,恰好拼成一個(gè)無縫隙無重疊的四邊形EFGH,若EH=9厘米,EF=12厘米,則邊AD的長是(????)A.12厘米B.15厘米C.20厘米D.21厘米2.?如圖,在矩形ABCD中,AB=4,BC=8,將矩形ABCD沿EF折
2025-05-11 12:58
【摘要】勾股定理??剂?xí)題勾股定理的直接應(yīng)用:1、在Rt△ABC中,∠C=90°,a=12,b=16,則c的長為()A:26B:18C:20D:212、在平面直角坐標(biāo)系中,已知點(diǎn)P的坐標(biāo)是(3,4),則OP的長為()A:3B:4
【摘要】勾股定理典型分類練習(xí)題題型一:直接考查勾股定理,.⑴已知,.求的長2已知,,求的長變式1:已知,△ABC中,AB=17cm,BC=16cm,BC邊上的中線AD=15cm,試說明△ABC是等腰三角形。變式2:已知△ABC的三邊a、b、c,且a+b=17,ab=60,c=13,△ABC是否是直角三角形?
【摘要】勾股定理復(fù)習(xí)一.知識(shí)歸納1.勾股定理內(nèi)容:直角三角形兩直角邊的平方和等于斜邊的平方;表示方法:如果直角三角形的兩直角邊分別為,,斜邊為,那么勾股定理的由來:勾股定理也叫商高定理,在西方稱為畢達(dá)哥拉斯定理.我國古代把直角三角形中較短的直角邊稱為勾,較長的直角邊稱為股,斜邊稱為弦.早在三千多年前,周朝數(shù)學(xué)家商高就提出了“勾三,股四,弦五”形式的勾股定理,后來人們進(jìn)一步發(fā)現(xiàn)
2025-08-09 03:12
【摘要】勾股定理知識(shí)點(diǎn)1.勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方.即2.勾股定理逆定理:若三角形的三邊長滿足,則這個(gè)三角形是直角三角形.3.常見的勾股數(shù):3,4,5;5,12,13;7,24,25;8,15,17;9,12,15.注意:勾股數(shù)的任意倍還是勾股數(shù).利用勾股定理求直角三角形斜邊上的高1.直角三角形的兩直角邊分別為5cm,12cm,其斜邊上的
2025-08-09 04:18
【摘要】勾股定理和勾股定理逆定理經(jīng)典例題題型一:直接考查勾股定理例1在△ABC中,∠C=90°(1)已知AC=6,BC=8,求AB的長;A(2)已知AB=17,AC=15,求BC的長.BC題型二:利用勾股定理測量長度1、如果梯子的底端離建筑物9m,那么15m長的梯子可以到達(dá)建筑物的高度是多少米?DABC2、如圖
【摘要】HK版八年級(jí)下階段核心題型勾股定理解題的十種常見題型第18章勾股定理4提示:點(diǎn)擊進(jìn)入習(xí)題答案顯示123見習(xí)題見習(xí)題見習(xí)題見習(xí)題9678見習(xí)題見習(xí)題見習(xí)題見習(xí)題5見習(xí)題10見習(xí)題1.如圖,在
2025-04-13 12:20
【摘要】:如圖,在△ABC中,∠C=90°,點(diǎn)M在BC上,且BM=AC,點(diǎn)N在AC上,且AN=MC,AM與BN相交于點(diǎn)P,求證:∠BPM=45°答案:如圖,過點(diǎn)M作ME∥=(平行等于)AN,連NE,BE,則四邊形AMEN為平行四邊形得NE=AM,ME⊥BC∵M(jìn)E=CM,∠EMB=∠MCA=90°,BM=AC∴△BEM≌△AMC,得BE=AM=NE,∠1=∠2
2025-08-10 07:41
【摘要】勾股定理習(xí)題1.“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國古代數(shù)學(xué)的驕傲,如圖所示的“趙爽弦圖”是由四個(gè)全等的直角三角形和一個(gè)小正方形拼成的一個(gè)大正方形,設(shè)直角三角形較長直角邊長為a,較短直角邊長為b,若(a+b)2=21,大正方形的面積為13,則小正方形的面積為( )A.3B.4C.5D.6【解答】解:如圖所示:∵(a+b)2=21,∴a2+2
【摘要】勾股定理5分鐘訓(xùn)練(預(yù)習(xí)類訓(xùn)練,可用于課前)△ABC中,∠C=90°.(1)若a=3,b=4,則c=__________________;(2)若a=6,c=10,則b=__________________.[來源:學(xué)科網(wǎng)ZXXK]答案:(1)5(2)8,寫出字母代表的正方形面積,A=__________________B=_____________
2025-05-11 04:35