【摘要】初中幾何公式匯總初中幾何公式:線1過兩點有且只有一條直線2兩點之間線段最短3同角或等角的補角相等4同角或等角的余角相等5過一點有且只有一條直線和已知直線垂直6直線外一點與直線上各點連接的所有線段中,垂線段最短7平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行初中幾何公式:角
2024-08-06 08:42
【摘要】初中幾何公式、定理1過兩點有且只有一條直線2兩點之間線段最短3同角或等角的補角相等4同角或等角的余角相等5過一點有且只有一條直線和已知直線垂直6直線外一點與直線上各點連接的所有線段中,垂線段最短7平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行9同位角相等,兩直線平
2024-08-06 21:50
【摘要】旋轉知識點歸納OBA圖1知識點1:旋轉的定義及其有關概念在平面內(nèi),將一個圖形繞一個定點O沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉,定點O稱為旋轉中心,轉動的角稱為旋轉角;如果圖形上的點P經(jīng)過旋轉到點,那么這兩個點叫做這個旋轉的對應點.如圖1,線段AB繞點O順時針轉動得到,這就是旋轉,點O就是旋轉中心,都是旋轉角.說明:旋轉的范圍是在平面內(nèi)旋轉
2025-05-22 03:01
【摘要】初中數(shù)學的所有幾何定理及公式1過兩點有且只有一條直線2兩點之間線段最短3同角或等角的補角相等4同角或等角的余角相等5過一點有且只有一條直線和已知直線垂直6直線外一點與直線上各點連接的所有線段中,垂線段最短7平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行9同位角相
2025-05-22 03:48
【摘要】初中幾何定義和公式1過兩點有且只有一條直線2兩點之間線段最短3同角或等角的補角相等4同角或等角的余角相等5過一點有且只有一條直線和已知直線垂直6直線外一點與直線上各點連接的所有線段中,垂線段最短7平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行9同位角相
【摘要】初中幾何經(jīng)典試題:初中幾何經(jīng)典難題總結
2025-05-11 12:33
【摘要】證明圓的切線方法及例題證明圓的切線常用的方法有:一、若直線l過⊙O上某一點A,證明l是⊙O的切線,只需連OA,證明OA⊥l就行了,簡稱“連半徑,證垂直”,難點在于如何證明兩線垂直.例1如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于D,交AC于E,B為切點的切線交OD延長線于F.求證:EF與⊙O相切.證明:連結OE,AD.∵AB是⊙O的直徑,
2025-05-12 12:02
【摘要】立體幾何周練命題人---王利軍一、選擇題(每小題5分,共60分)1、線段在平面內(nèi),則直線與平面的位置關系是A、B、C、由線段的長短而定D、以上都不對2、下列說法正確的是A、三點確定一個平面B、四邊形一定是平面圖形C、梯形一定是平面圖形D、
2025-05-13 05:39
2024-09-05 19:12
【摘要】經(jīng)典難題(一)1、已知:如圖,O是半圓的圓心,C、E是圓上的兩點,CD⊥AB,EF⊥AB,EG⊥CO.求證:CD=GF.(初二)AFGCEBOD2、已知:如圖,P是正方形ABCD內(nèi)點,∠PAD=∠PDA=150.APCDB求證:△PBC是正三角形.(初二)
2024-07-29 06:31
【摘要】初中幾何證明題經(jīng)典題(一)1、已知:如圖,O是半圓的圓心,C、E是圓上的兩點,CD⊥AB,EF⊥AB,EG⊥CO.求證:CD=GF.(初二)AFGCEBOD2、已知:如圖,P是正方形ABCD內(nèi)點,∠PAD=∠PDA=150.APCDB求證:△PBC是正三角形.(初二)
2024-07-29 06:34
【摘要】初中幾何證明題經(jīng)典題(一)1、已知:如圖,O是半圓的圓心,C、E是圓上的兩點,CD⊥AB,EF⊥AB,EG⊥CO.求證:CD=GF.(初二)2、已知:如圖,P是正方形ABCD內(nèi)部的一點,∠PAD=∠PDA=15°。求證:△PBC是正三角形.(初二)
2024-07-29 07:36
【摘要】初中幾何證明題已知:如圖,O是半圓的圓心,C、E是圓上的兩點,CD⊥AB,EF⊥AB,EG⊥CO.求證:CD=GFAFGCEBOD已知:如圖,P是正方形ABCD內(nèi)點,∠PAD=∠PDA=150.APCDB求證:△PBC是正三角形.D2C2B
2024-07-29 05:23
【摘要】DCBAE如圖,已知D是△ABC內(nèi)一點,試說明AB+AC>BD+CD證明:延長BD交AC于E在△ABC中,AB+AE>BE,即AB+AE>BD+DE……①在△DEC中,DE+EC>DC……②①+②,得(AB+AE)+(DE+EC)>(BD+DE)+CD即AB+(AE+EC)+DE>(BD+DE)+CD即AB+AC+DE>BD+DE+
2024-08-04 02:07
【摘要】不等式的證明規(guī)律及重要公式總結重要公式1、(可直接用)2、(要會證明)3、即可)4、,;5、,證明方法方法一:作差比較法:已知:,求證:。證:左-右=方法二:作上比較法,設a、b、c,且,求證:證:當ab0時當0b還是a
2025-05-11 05:47