【摘要】浙江省專用本課件為“逐字編輯”課件,使用時(shí)欲修改課件,請(qǐng)雙擊對(duì)應(yīng)內(nèi)容,即可進(jìn)入可編輯狀態(tài)。在此狀態(tài)下,如果有的公式雙擊后無法用公式編輯器編輯,請(qǐng)選中此公式,點(diǎn)擊右鍵、“切換域代碼”,即可進(jìn)行編輯。修改后再點(diǎn)擊右鍵、“切換域代碼”,即完成修改。如有疑問歡迎致電:010-58818066專題4立體幾何
2024-08-27 21:57
【摘要】本課件為“逐字編輯”課件,使用時(shí)欲修改課件,請(qǐng)雙擊對(duì)應(yīng)內(nèi)容,即可進(jìn)入可編輯狀態(tài)。在此狀態(tài)下,如果有的公式雙擊后無法用公式編輯器編輯,請(qǐng)選中此公式,點(diǎn)擊右鍵、“切換域代碼”,即可進(jìn)行編輯。修改后再點(diǎn)擊右鍵、“切換域代碼”,即完成修改。第11講空間幾何體第12講點(diǎn)、直線、平面之間的位置關(guān)系性質(zhì)第13講
2025-07-10 20:24
【摘要】空間幾何體空間幾何體的結(jié)構(gòu)柱、錐、臺(tái)、球的結(jié)構(gòu)特征簡(jiǎn)單幾何體的結(jié)構(gòu)特征三視圖柱、錐、臺(tái)、球的三視圖簡(jiǎn)單幾何體的三視圖直觀圖斜二測(cè)畫法平面圖形空間幾何體中心投影柱、錐、臺(tái)、球的表面積與體積平行投影畫圖識(shí)圖柱錐臺(tái)球圓錐圓臺(tái)
2025-03-03 00:33
【摘要】1·如圖,四棱錐S-ABCD的底面是正方形,每條側(cè)棱的長(zhǎng)都是底面邊長(zhǎng)的倍,P為側(cè)棱SD上的點(diǎn)。(Ⅰ)求證:AC⊥SD;(Ⅱ)若SD⊥平面PAC,求二面角P-AC-D的大小(Ⅲ)在(Ⅱ)的條件下,側(cè)棱SC上是否存在一點(diǎn)E,∥平面PAC。若存在,求SE:EC的值;若不存在,試說明理由。
2025-06-04 07:49
【摘要】專題突破練19 專題五 立體幾何過關(guān)檢測(cè) 一、單項(xiàng)選擇題 1.(2020山東德州一模,4)在正方體ABCD-A1B1C1D1中,P是C1D1的中點(diǎn),且AP=A...
2025-04-03 02:25
【摘要】立體幾何復(fù)習(xí)講義【基礎(chǔ)回扣】1.平面平面的基本性質(zhì):掌握三個(gè)公理及推論,會(huì)說明共點(diǎn)、共線、共面問題。(1)證明點(diǎn)共線的問題,一般轉(zhuǎn)化為證明這些點(diǎn)是某兩個(gè)平面的公共點(diǎn)(依據(jù):由點(diǎn)在線上,線在面內(nèi),推出點(diǎn)在面內(nèi)),這樣可根據(jù)公理2證明這些點(diǎn)都在這兩個(gè)平面的公共直線上。(2)證明共點(diǎn)問題,一般是先證
2025-07-25 21:19
【摘要】平面的基本性質(zhì)公理1:如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在此平面內(nèi)(教師引導(dǎo)學(xué)生閱讀教材P42前幾行相關(guān)內(nèi)容,并加以解析)符號(hào)表示為L(zhǎng)A·αA∈LB∈L=LαA∈αB∈α公理1作用:判斷直線是否在平面內(nèi)生活中,我們看到三腳架可以牢固地支撐照相機(jī)或測(cè)量用的平板儀等等……C·
2025-06-04 00:53
【摘要】第1頁版權(quán)所有不得復(fù)制立體幾何中的數(shù)量問題二.重點(diǎn)、難點(diǎn):1.角度(1)兩條異面直線所成角]2,0(?(2)直線與平面所成角]2,0[?(3)二面角],0[?2.距離(1)作垂線(2)體積轉(zhuǎn)化【典型例題】[例1]PA、PB
2024-10-10 15:14
【摘要】精品資源1.在平行六面體OABC---DEFG中(如圖),側(cè)面OABC和CBFG是單位正方形,面OCGD是菱形且∠COD=60°.設(shè)a是常數(shù)且0a1,P是EB上的點(diǎn)且分EB的比為2:1,Q在GE上,且分線段GE的比為a(1-a).(1)試用(2)當(dāng)a為何值時(shí),有最小值?解(1)所以平行六面體OABC---DEFG為
2025-06-04 07:36
【摘要】立體幾何中的數(shù)量問題二.重點(diǎn)、難點(diǎn):1.角度(1)兩條異面直線所成角(2)直線與平面所成角(3)二面角2.距離(1)作垂線(2)體積轉(zhuǎn)化【典型例題】[例1]PA、PB、PC兩兩垂直,與PA、PB所成角為45°,60°,求與PC所成角。解:構(gòu)造長(zhǎng)方體[例2]正四棱錐S—A
2025-07-25 23:44
【摘要】本課件為“逐字編輯”課件,使用時(shí)欲修改課件,請(qǐng)雙擊對(duì)應(yīng)內(nèi)容,即可進(jìn)入可編輯狀態(tài)。在此狀態(tài)下,如果有的公式雙擊后無法用公式編輯器編輯,請(qǐng)選中此公式,點(diǎn)擊右鍵、“切換域代碼”,即可進(jìn)行編輯。修改后再點(diǎn)擊右鍵、“切換域代碼”,即完成修改。第8講空間幾何體第9講直線、平面之間的位置關(guān)系專題4
2024-09-11 16:41
【摘要】一、判定兩線平行的方法1、平行于同一直線的兩條直線互相平行2、垂直于同一平面的兩條直線互相平行3、如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,那么這條直線就和交線平行4、如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線平行5、在同一平面內(nèi)的兩條直線,可依據(jù)平面幾何的定理證明二、判定線面平行的方法1、據(jù)定義:如果一條直線和一個(gè)平面
2025-06-04 01:18
【摘要】專題達(dá)標(biāo)檢測(cè)一、選擇題1.若a、b表示互不重合的直線,α、β表示不重合的平面,則a∥α的一個(gè)充分條件是( )A.α∥β,a∥βB.α⊥β,a⊥βC.a(chǎn)∥b,b∥αD.α∩β=b,a?α,a∥b解析:A,B,C選項(xiàng)中,直線a都有可能在平面α內(nèi),不能滿足充分性,故選D.答案
2025-07-25 19:25
【摘要】理科數(shù)學(xué)高考立體幾何大題精選不建系求解1.本小題滿分12分)(注意:在試題卷上作答無效)如圖,四棱錐S-ABCD中,SD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=SD=2,E為棱SB上的一點(diǎn),平面EDC平面SBC.(Ⅰ)證明:SE=2EB;(Ⅱ)求二面角A-DE-C的大小.2.(本小
2025-06-04 06:43
【摘要】《立體幾何》專題練習(xí)題1.如圖正方體中,E、F分別為D1C1和B1C1的中點(diǎn),P、Q分別為A1C1與EF、AC與BD的交點(diǎn),(1)求證:D、B、F、E四點(diǎn)共面;(2)若A1C與面DBFE交于點(diǎn)R,求證:P、Q、R三點(diǎn)共線2.已知直線、異面,平面過且平行于,平面過且平行于,求證:∥.FECByZ
2025-06-04 13:06