【摘要】圓錐曲線與射影幾何射影幾何是幾何學(xué)的重要內(nèi)容,射影幾何中的一些重要定理和結(jié)論往往能運(yùn)用在歐式幾何中,有利于我們的解題。在這里,我們將對(duì)解析幾何中一些常見的圓錐曲線問題進(jìn)行總結(jié),并給中一些較為方便的解法。例1:設(shè)點(diǎn),D在雙曲線的左支上,,直線交雙曲線的右支于點(diǎn)。求證:直線與直線的交點(diǎn)在直線上。如果是用解析幾何的做法,這將是非常
2024-08-02 15:55
【摘要】圓錐曲線的幾何性質(zhì)xyoF11F2AB一、橢圓的幾何性質(zhì)(以+=1(a﹥b﹥0)為例) 1、⊿ABF2的周長(zhǎng)為4a(定值)證明:由橢圓的定義即 2、焦點(diǎn)⊿PF1F2中:xyoF1F22P(1)S⊿PF1F2=(2)(S⊿PF1F2)max=bc(3)當(dāng)P在短軸上時(shí),∠F1PF2最大證明:
2024-09-15 04:45
【摘要】平面解析幾何(直線和圓的方程、圓錐曲線)專題圓錐曲線幾何性質(zhì)如果涉及到其兩“焦點(diǎn)”,優(yōu)先選用圓錐曲線第一定義;如果涉及到其“焦點(diǎn)”、“準(zhǔn)線”或“離心率”,優(yōu)先選用圓錐曲線第二定義;此外,如果涉及到焦點(diǎn)三角形的問題,也要重視焦半徑和三角形中正余弦定理等幾何性質(zhì)的應(yīng)用.橢圓方程的第一定義:雙曲線的第一定義:圓錐曲線第二定義(統(tǒng)一定義):平面內(nèi)到定點(diǎn)F和定直線的距離之比為
2024-09-04 06:34
【摘要】相關(guān)知識(shí)點(diǎn):含義含有可變參數(shù)的曲線系所經(jīng)過的點(diǎn)中不隨參數(shù)變化的某個(gè)點(diǎn)或某幾個(gè)點(diǎn)定點(diǎn)解法把曲線系方程按照參數(shù)進(jìn)行集項(xiàng),使得方程對(duì)任意參數(shù)恒成立的方程組的解即為曲線系恒過的定點(diǎn)含義不隨其他量的變化而發(fā)生數(shù)值變化的量定值解法建立這個(gè)量關(guān)于其他量的關(guān)系式,最后的結(jié)果與其他變化的量無關(guān)定點(diǎn)問
2024-09-15 03:30
【摘要】解析幾何專題六1????1()(2)2ee圓錐曲線的統(tǒng)一性、和諧性從方程的形式看,在直角坐標(biāo)系中,三類曲線的方程都是二元二次的,所以也叫二次曲線.從點(diǎn)的集合或軌跡的觀點(diǎn)看,它們都是與
2025-01-15 01:26
【摘要】第九章 求曲線(或直線)方程解析幾何求曲線(或直線)的方程一、基礎(chǔ)知識(shí):1、求曲線(或直線)方程的思考方向大體有兩種,一個(gè)方向是題目中含幾何意義的條件較多(例如斜率,焦距,半軸長(zhǎng),半徑等),那么可以考慮利用幾何意義求出曲線方程中的要素的值,從而按定義確定方程;另一個(gè)方向是
2024-09-04 00:15
【摘要】.專題14圓錐曲線中的最值和范圍問題★★★高考在考什么【考題回放】1.已知雙曲線(a0,b0)的右焦點(diǎn)為F,若過點(diǎn)F且傾斜角為60°的直線與雙曲線的右支有且只有一個(gè)交點(diǎn),則此雙曲線離心率的取值范圍是(C)A.(1,2)B.(1,2)C.
2024-09-04 00:14
【摘要】微專題圓錐曲線幾何條件的處理策略幾何性質(zhì)代數(shù)實(shí)現(xiàn)對(duì)邊平行斜率相等,或向量平行對(duì)邊相等長(zhǎng)度相等,橫(縱)坐標(biāo)差相等對(duì)角線互相平分中點(diǎn)重合例1.(2015,新課標(biāo)2理科20)已知橢圓,直線不過原點(diǎn)且不平行于坐標(biāo)軸,與有兩個(gè)交點(diǎn),,線段的中點(diǎn)為.(Ⅰ)證明:直線的斜率與的斜率的乘積為定值;(Ⅱ)若過點(diǎn),延長(zhǎng)線段與交于點(diǎn),四邊
2024-09-15 07:11
【摘要】麻城市第一中學(xué)圓錐曲線中的定點(diǎn)問題麻城一中王輝麻城市第一中學(xué)1.解析幾何中,定點(diǎn)問題是高考命題的一個(gè)熱點(diǎn),也是一個(gè)難點(diǎn),因?yàn)槎c(diǎn)必然是在變化中所表現(xiàn)出來的不變量,所以可運(yùn)用函數(shù)的思想方法,結(jié)合等式的恒成立求解,也就是說要與題中的可變量無關(guān)。2.求定點(diǎn)常用方法有兩種:①特殊到一般法,根據(jù)動(dòng)點(diǎn)、
2024-09-15 04:47
【摘要】解析幾何中的參數(shù)取值范圍問題例1:選題意圖:利用三角形中的公理構(gòu)建不等式xy設(shè)分別是橢圓的左、右焦點(diǎn),若在直線上存在點(diǎn)P,使線段的中垂線過點(diǎn),求橢圓離心率的取值范圍.解法一:設(shè)P,F(xiàn)1P的中點(diǎn)Q的坐標(biāo)為,則kF1P=,kQF2=.由kF1P·kQF2=-1,得y2=.因?yàn)閥2≥0,但注意b2+2c2≠0,所以2c2-b2>0,
2025-05-12 00:03
【摘要】高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件80《圓錐曲線的綜合問題》一、基本知識(shí)概要:知識(shí)精講:圓錐曲線的綜合問題包括:解析法的應(yīng)用,數(shù)形結(jié)合的思想,與圓錐曲線有關(guān)的定值、最值等問題,主要沿著兩條主線,即圓錐曲線科內(nèi)綜合與代數(shù)間的科間綜合,靈活運(yùn)用解析幾何的常用方法,解決圓錐曲線的綜合問題;通過問題的解決,進(jìn)一步掌握函數(shù)與方程
2025-01-13 00:28
【摘要】圓錐曲線內(nèi)容梳理與常見問題類型解答寧夏銀川一中張德萍圓錐曲線是高中數(shù)學(xué)的重、難點(diǎn),是每年高考的主干考點(diǎn),它包含的內(nèi)容豐富、題型多樣.表12022-2022年高考全國卷對(duì)圓錐曲線的總體考查情況題型(題號(hào)/內(nèi)容)題合計(jì)試卷所占年份考卷數(shù)
2024-09-15 04:30
【摘要】教材分析本節(jié)內(nèi)容是數(shù)學(xué)必修4第二章平面向量的第一課時(shí).本節(jié)課是在學(xué)習(xí)了向量的線性運(yùn)算及向量數(shù)量積的基礎(chǔ)上進(jìn)行的,是對(duì)前面學(xué)習(xí)內(nèi)容的延續(xù)與拓展;本節(jié)的目的是讓學(xué)生加深對(duì)向量的認(rèn)識(shí),更好地體會(huì)向量這個(gè)工具的優(yōu)越性。對(duì)于向量方法,就思路而言,向量方法與平面幾何中的解析法是一致的,不同的只是用“向量和向量運(yùn)算”來代替“數(shù)和數(shù)的運(yùn)算”.同時(shí)本節(jié)課也是對(duì)向量相關(guān)知識(shí)的進(jìn)一步鞏固、應(yīng)用
2024-09-28 16:34
【摘要】2020屆高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件80《圓錐曲線的綜合問題》一、基本知識(shí)概要:知識(shí)精講:圓錐曲線的綜合問題包括:解析法的應(yīng)用,數(shù)形結(jié)合的思想,與圓錐曲線有關(guān)的定值、最值等問題,主要沿著兩條主線,即圓錐曲線科內(nèi)綜合與代數(shù)間的科間綜合,靈活運(yùn)用解析幾何的常用方法,解決圓錐曲線的綜合問題;通過問題的解決,進(jìn)一步掌握
2025-01-14 02:53
【摘要】利用反證法證明圓錐曲線的光學(xué)性質(zhì)迤山中學(xué)數(shù)學(xué)組賈浩利用反證法證明圓錐曲線的光學(xué)性質(zhì)反證法又稱歸謬法,是高中數(shù)學(xué)證明中常用的一種方法。利用反證法證明問題的思路為:首先在原命題的條件下,假設(shè)結(jié)論的反面成立,然后推理出明顯矛盾的結(jié)果,從而說明假設(shè)不成立,則原命題得證。在光的折射定律中,從點(diǎn)發(fā)出的光經(jīng)過直線折射后,反射光
2024-08-02 15:52