【摘要】第二章小樣本最小二乘法
2025-06-15 23:41
【摘要】1第二章最小二乘法(OLS)和線性回歸模型2本章要點(diǎn)?最小二乘法的基本原理和計(jì)算方法?經(jīng)典線性回歸模型的基本假定?BLUE統(tǒng)計(jì)量的性質(zhì)?t檢驗(yàn)和置信區(qū)間檢驗(yàn)的原理及步驟?多變量模型的回歸系數(shù)的F檢驗(yàn)?預(yù)測(cè)的類型及評(píng)判預(yù)測(cè)的標(biāo)準(zhǔn)?好模型具有的特征3第一節(jié)
2024-09-11 13:02
【摘要】第三章財(cái)務(wù)管理技術(shù)方法?????貨幣的時(shí)間價(jià)值時(shí)間價(jià)值:?由消費(fèi)選擇的觀點(diǎn)發(fā)展,貨幣的時(shí)間價(jià)值是在金融體系運(yùn)作下,由于利率的存在賦予了今天的一毛錢可在未來(lái)產(chǎn)生額外的價(jià)值,亦即放棄消費(fèi)選擇儲(chǔ)蓄?注意:前提是有效利用才成立。利率的決
2025-03-27 14:40
【摘要】一、最小二乘法二、小結(jié)第七節(jié)最小二乘法在工程問(wèn)題中,常常需要根據(jù)兩個(gè)變量的幾組實(shí)驗(yàn)數(shù)值——實(shí)驗(yàn)數(shù)據(jù),來(lái)找出這兩個(gè)變量的函數(shù)關(guān)系的近似表達(dá)式.通常把這樣得到的函數(shù)的近似表達(dá)式叫做經(jīng)驗(yàn)公式.一、最小二乘法(leastsquaremethod)問(wèn)題:如何得到經(jīng)驗(yàn)公式,常用的方法是什么?為了弄清某企業(yè)利潤(rùn)和產(chǎn)值
2024-11-02 12:39
【摘要】第三章曲線擬合的最小二乘法需要從一組給定的數(shù)據(jù)(,)iixy中,尋找自變量X與變量y之間的關(guān)系()yfx?例:60年代世界人口增長(zhǎng)情況如下:年19601961196319641965196619671968人口
2025-07-12 21:14
【摘要】最小二乘法綜述及算例一最小二乘法的歷史簡(jiǎn)介1801年,意大利天文學(xué)家朱賽普·皮亞齊發(fā)現(xiàn)了第一顆小行星谷神星。經(jīng)過(guò)40天的跟蹤觀測(cè)后,由于谷神星運(yùn)行至太陽(yáng)背后,使得皮亞齊失去了谷神星的位置。隨后全世界的科學(xué)家利用皮亞齊的觀測(cè)數(shù)據(jù)開(kāi)始尋找谷神星,但是根據(jù)大多數(shù)人計(jì)算的結(jié)果來(lái)尋找谷神星都沒(méi)有結(jié)果。時(shí)年24歲的高斯也計(jì)算了谷神星的軌道。奧地利天文學(xué)家海因里?!W爾伯斯根據(jù)高斯
2025-08-12 02:50
【摘要】1分段插值法§從上節(jié)可知,如果插值多項(xiàng)式的次數(shù)過(guò)高,可能產(chǎn)生Runge現(xiàn)象,因此,在構(gòu)造插值多項(xiàng)式時(shí)常采用分段插值的方法。一、分段線性Lagrange插值,ix設(shè)插值節(jié)點(diǎn)為niyi,,1,0,??函數(shù)值為],[,,11??kkkkxxxx形成一個(gè)插值區(qū)間任取兩個(gè)相鄰的節(jié)點(diǎn)構(gòu)造Lagrange線性插值
2025-06-16 07:50
【摘要】第三章函數(shù)逼近1賦范空間2內(nèi)積空間3正交多項(xiàng)式的性質(zhì)4常用正交多項(xiàng)式5最佳平方逼近問(wèn)題6曲線擬合的最小二乘法2021年6月14日星期一26曲線擬合的最小二乘法?背景:?離散數(shù)據(jù)的特點(diǎn)?數(shù)據(jù)不準(zhǔn)確?數(shù)據(jù)多,甚至是是大量的?數(shù)據(jù)采樣一般基本上反映函數(shù)的基本性態(tài)
【摘要】最小二乘法在曲線擬合中比較普遍。擬合的模型主要有......一般對(duì)于LS問(wèn)題,通常利用反斜杠運(yùn)算“\”、fminsearch或優(yōu)化工具箱提供的極小化函數(shù)求解。在Matlab中,曲線擬合工具箱也提供了曲線擬合的圖形界面操作。在命令提示符后鍵入:cftool,即可根據(jù)數(shù)據(jù),選擇適當(dāng)?shù)臄M合模型?!癨”命令:y=a+b*x+c*x^:X=[ones(siz
2024-09-05 02:21
【摘要】晉中學(xué)院本科生畢業(yè)設(shè)論文用最小二乘法求無(wú)限深勢(shì)阱基態(tài)能量和波函數(shù)學(xué)生:陳曉娜指導(dǎo)教師:王麗摘要:用最小二乘法求出了粒子在無(wú)限深勢(shì)阱中運(yùn)動(dòng)時(shí)的基態(tài)能量和波函數(shù),并與精確解進(jìn)行比較,結(jié)果表明二者相差很小.關(guān)鍵詞:最小二乘法;波函數(shù);能級(jí);無(wú)限深勢(shì)阱晉中學(xué)院本科生畢業(yè)設(shè)論文
2025-07-31 00:40
【摘要】1iiijjijiilxlbx?????11?????????????nnnnnnaaaaaaaaaA???????212222111211bAx?第三章插值法和最小二乘法插值法
2025-07-16 09:59
【摘要】實(shí)驗(yàn)三函數(shù)逼近一、實(shí)驗(yàn)?zāi)繕?biāo)1.掌握數(shù)據(jù)多項(xiàng)式擬合的最小二乘法。2.會(huì)求函數(shù)的插值三角多項(xiàng)式。二、實(shí)驗(yàn)問(wèn)題(1)由實(shí)驗(yàn)得到下列數(shù)據(jù)試對(duì)這組數(shù)據(jù)進(jìn)行曲線擬合。(2)求函數(shù)在區(qū)間上的插值三角多項(xiàng)式。三、實(shí)驗(yàn)要求1.利用最小二乘法求問(wèn)題(1)所給數(shù)據(jù)的3次、4次擬合多項(xiàng)式,畫出擬合曲線。2
2025-08-13 20:56
【摘要】第6章?曲線擬合的最小二乘法?擬合曲線 通過(guò)觀察或測(cè)量得到一組離散數(shù)據(jù)序列,當(dāng)所得數(shù)據(jù)比較準(zhǔn)確時(shí),可構(gòu)造插值函數(shù)逼近客觀存在的函數(shù),構(gòu)造的原則是要求插值函數(shù)通過(guò)這些數(shù)據(jù)點(diǎn),即。此時(shí),序列與是相等的?! ∪绻麛?shù)據(jù)序列,含有不可避免的誤差(或稱“噪音”),;如果數(shù)據(jù)序列無(wú)法同時(shí)滿足某特定函數(shù),,那么,只能要求所做逼近函數(shù)最優(yōu)地靠近樣點(diǎn),即向量與的誤差或距離最小。
2025-08-12 15:53
【摘要】1數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)后勤工程學(xué)院數(shù)學(xué)教研室擬合2實(shí)驗(yàn)?zāi)康膶?shí)驗(yàn)內(nèi)容2、掌握用數(shù)學(xué)軟件求解擬合問(wèn)題。1、直觀了解擬合基本內(nèi)容。1、擬合問(wèn)題引例及基本理論。4、實(shí)驗(yàn)作業(yè)。2、用數(shù)學(xué)軟件求解擬合問(wèn)題。3、應(yīng)用實(shí)例3擬合1.擬合問(wèn)題引例4
2024-09-15 08:13
【摘要】數(shù)學(xué)系UniversityofScienceandTechnologyofChinaDEPARTMENTOFMATHEMATICS第3章曲線擬合的最小二乘法給出一組離散點(diǎn),確定一個(gè)函數(shù)逼近原函數(shù),插值是這樣的一種手段。在實(shí)際中,數(shù)據(jù)不可避免的會(huì)有誤差,插值函數(shù)會(huì)將這些誤差也包括在內(nèi)。因此,我們
2024-08-30 09:54