freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

外文翻譯--車輛檢測(cè)技術(shù)在交通管理上的應(yīng)用-交通線路-在線瀏覽

2025-07-31 05:49本頁(yè)面
  

【正文】 stop bar. The second type of microwave radar detector transmits a sawtooth waveform, also called a frequencymodulated continuous wave (FMCW), that varies the transmitted frequency continuously with time. It permits stationary vehicles to be detected by measuring the range from the detector to the vehicle and also calculates vehicle speed by measuring the time it takes for the vehicle to travel between two internal markers (range bins) that represent known distances from the radar. Vehicle speed is then simply calculated as the distance between the two range bins divided by the time it takes the vehicle to travel that distance. Since this detector can sense stopped vehicles, it is sometimes referred to as a truepresence microwave radar. Passive Infrared Detectors Passive infrared detectors can supply vehicle passage and presence data, but not speed. They use an energy sensitive photon detector located at the optical focal plane to measure the infrared energy emitted by objects in the detector’s field of view. Passive detectors do not transmit energy of their own. When a vehicle enters the detection zone, it produces a change in the energy normally measured from the road surface in the absence of a vehicle. The change in energy is proportional to the absolute temperature of the vehicle and the emissivity of the vehicle’s metal surface (emissivity is equal to the ratio of the energy actually emitted by a material to the energy emitted by a perfect radiator of energy at the same temperature). The difference in energy that reaches the detector is reduced when there is water vapor, rain, snow, or fog in the atmosphere. For the approximately 20 ft ( m) distances typical of traffic monitoring applications with this type of detector, these atmospheric constituents may not produce significant performance degradation. Active Infrared Detectors Active infrared detectors function similarly to microwave radar detectors. The most prevalent types use a laser diode to transmit energy in the near infrared spectrum (approximately micrometer wavelength), a portion of which is reflected back into the receiver of the detector from a vehicle in its field of view. Laser radars can supply vehicle passage, presence, and speed information. Speed is measured by noting the time it takes a vehicle to cross two infrared beams that are scanned across the road surface a known distance apart. Some laser radar models also have the ability to classify vehicles by measuring and identifying their profiles. Other types of active infrared detectors use light emitting diodes (LEDs) as the signal source. Ultrasonic Detectors Ultrasonic vehicle detectors can be designed to receive range and Doppler speed data. However, the most prevalent and lowcost ultrasonic detectors are those that measure range to provide vehicle passage and presence data only. The ultrasonic Doppler detector that also measures vehicle speed is an order of magnitude more expensive than the presence detector. Ultrasonic detectors transmit sound at 25 kHz to 50 kHz (depending on the manufacturer). These frequencies lie above the audible region. A portion of the transmitted energy is reflected from the road or vehicle surface into the receiver portion of the instrument and is processed to give vehic
點(diǎn)擊復(fù)制文檔內(nèi)容
畢業(yè)設(shè)計(jì)相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1