【摘要】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)弧度制課時跟蹤檢測新人教A版必修4考查知識點及角度難易度及題號基礎(chǔ)中檔稍難“角度”與“弧度”的換算1弧度數(shù)的計算及運(yùn)用58、10扇形面積公式、弧長公式的運(yùn)用26、7綜合問題3、49、11121.下列
2024-12-21 03:48
【摘要】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)弧度制學(xué)業(yè)達(dá)標(biāo)測試新人教A版必修41.2弧度的角所在的象限是()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限解析:∵π2<2<π,∴2弧度的角是第二象限角.答案:B2.圓的半徑變?yōu)樵瓉淼?倍,而弧長也增加到原來的2倍,則()A.扇形
【摘要】2.向量的減法上節(jié)課我們學(xué)習(xí)了向量加法的概念,并給出了求作和向量的方法.如果河水的流速為2km/n,要想船以6km/n的速度垂直駛向?qū)Π?,如何求船本身的速度和方向呢?.與a______________的向量,叫做a的相反向量,記為________,零向量的相反向量是________.答案:長度相等
2024-12-20 07:03
【摘要】2.2向量的線性運(yùn)算2.向量的加法情景:請看如下問題:(1)如圖(1),某人從A到B,再從B按原來的方向到C,則兩次位移的和AB→+BC→應(yīng)該是________.(2)如圖(2),飛機(jī)從A到B,再改變方向從B到C,則兩次位移的和AB→+BC→應(yīng)該是________.(3)如圖
2024-12-20 20:22
【摘要】弧度制和弧度制與角度制的換算知識目標(biāo):⑴使學(xué)生理解弧度的意義;能正確進(jìn)行弧度與角度的換算,熟記特殊角的弧度數(shù)。⑵了解角的集合與實數(shù)集之間可以建立起一一對應(yīng)關(guān)系。⑶掌握弧度制下弧長公式,會利用弧度解決實際問題。二.請大家用8分鐘時間閱讀教材第7頁到第9頁,回答以下幾個問題:⑴了解弧度制的
2024-11-30 12:10
【摘要】第1章三角函數(shù)1.1任意角、弧度1.任意角你的手表慢了5分鐘,你是怎樣將它校準(zhǔn)的?假如你的手表快了小時,你應(yīng)當(dāng)如何將它校準(zhǔn)?當(dāng)時間校準(zhǔn)后,分針旋轉(zhuǎn)了多少度?從該問題中可以看出,要正確地表達(dá)“校準(zhǔn)”手表的過程,需要同時說明分針的旋轉(zhuǎn)量和旋轉(zhuǎn)方向.當(dāng)分針旋轉(zhuǎn)超過一周后,如何表述這
2024-12-21 03:49
【摘要】第2章平面向量2.1向量的概念及表示情景:如圖,一只老鼠從A處以30km/h的速度向西北方向逃竄,如果貓由B處向正東方向以40km/h的速度追.思考:貓能捉到老鼠嗎?為什么?1.我們把既有________又有________的量叫做向量.如:力、位移、速度、加速度等.答案:大小方向
2024-12-20 13:12
【摘要】必修4第一章三角函數(shù)弧度制2、1o的角是怎樣規(guī)定的?1、什么叫角度制?2.規(guī)定周角的1/360叫做1度的角。1.用度作單位來度量角的單位制叫做角度制。單位為“度”(即“o”)不能省略一、弧度制我們把長度等于半徑長的弧所對
2024-12-17 10:17
【摘要】2.平面向量的坐標(biāo)運(yùn)算情景:我們知道,在直角坐標(biāo)平面內(nèi),每一個點都可用一對有序?qū)崝?shù)(即它的坐標(biāo))表示,如點A(x,y)等.思考:對于每一個向量如何表示?若知道平面向量的坐標(biāo),應(yīng)如何進(jìn)行運(yùn)算?1.兩個向量和的坐標(biāo)等于________________________________.即若a=(x1,y1),b
2024-12-21 03:42
【摘要】任意角和弧度制任意角第一章三角函數(shù)高中新課程數(shù)學(xué)必修④問題提出,角是可以度量其大小的.在平面幾何中,角的取值范圍如何?,也充滿了角的概念.2020年11月22日,在匈牙利德布勒森舉行的第36屆世界體操錦標(biāo)賽中,“李小鵬跳”——“踺子后手翻轉(zhuǎn)體180度接直體前空翻轉(zhuǎn)體900度”,
2024-11-29 17:10
2024-12-17 10:16
【摘要】1.三角函數(shù)的應(yīng)用情景:如圖,某大風(fēng)車的半徑為2m,每12s旋轉(zhuǎn)一周,它的最低點O離地面m,風(fēng)車圓周上一點A從最低點O開始,運(yùn)動t(s)后與地面的距離為h(m).思考:你能求出函數(shù)h=f(t)的關(guān)系式嗎?你能畫出它的圖象嗎?1.已知函數(shù)類型求解析式的方法是________.答案:待
2024-12-20 20:23
【摘要】1.函數(shù)y=Asin(ωx+φ)的圖象情景:下表是某地1951—1981年月平均氣溫(華氏):月份123456平均氣溫月份789101112平均氣溫思考:(1)以月份為x軸,以平均氣溫為y軸,描出散點.(2)用正弦曲線去擬合這些數(shù)據(jù).(
2024-12-21 03:45