【摘要】問(wèn)題探究探究1:已知平面上兩點(diǎn)P1(-1,2),P2(2,)求P1,P2的距離|P1P2|?7探究2:已知平面上兩點(diǎn)P1(x1,y1),P2(x2,y2),如何求P1,P2的距離|P1P2|?探究3:通過(guò)上訴探究,請(qǐng)問(wèn)研究?jī)牲c(diǎn)距離你有幾種常用的分析策略?探究4:通已知A(-1,2),
2025-03-18 14:58
【摘要】問(wèn)題探究探究1:已知平面上兩點(diǎn)P1(-1,2),P2(2,)求P1,P2的距離|P1P2|?7探究2:已知平面上兩點(diǎn)P1(x1,y1),P2(x2,y2),如何求P1,P2的距離|P1P2|?探究3:通過(guò)上訴探究,請(qǐng)問(wèn)研究?jī)牲c(diǎn)距離你有幾種常用的分析策略?探究4:通已知A(-1,2)
2024-11-30 01:47
【摘要】第2課時(shí)兩直線的交點(diǎn)坐標(biāo)、兩點(diǎn)間的距離一、選擇題1.點(diǎn)P(-3,4)關(guān)于直線x+y-2=0的對(duì)稱(chēng)點(diǎn)Q的坐標(biāo)是()A.(-2,1)B.(-2,5)C.(2,-5)D.(4,-3)解析:選B設(shè)對(duì)稱(chēng)點(diǎn)坐標(biāo)為(a,b),滿(mǎn)足?????a-32+b+42-2=0,
2024-12-20 02:41
【摘要】第1課時(shí)兩直線的交點(diǎn)坐標(biāo)、兩點(diǎn)間的距離一、選擇題1.兩直線2x+3y-k=0和x-ky+12=0的交點(diǎn)在y軸上,那么k的值為()A.-24B.6C.±6D.24解析:選C在2x+3y-k=0中,令x=0得y=k3,將??????0,k3代入x-ky+1
【摘要】第二課時(shí)兩直線的交點(diǎn)坐標(biāo)、兩點(diǎn)間的距離(習(xí)題課)&兩直線的交點(diǎn)坐標(biāo)、兩點(diǎn)間的距離1.兩條直線的交點(diǎn)坐標(biāo)如何求?2.如何根據(jù)方程組的解判斷兩直線的位置
2024-11-30 08:10
【摘要】四川省岳池縣第一中學(xué)高中數(shù)學(xué)必修三學(xué)案:3-3-2兩點(diǎn)間的距離學(xué)習(xí)目標(biāo),能運(yùn)用兩點(diǎn)間的距離公式解決一些簡(jiǎn)單問(wèn)題;逐步提高用代數(shù)方法解決幾何問(wèn)題的能力。,合作探究,通過(guò)具體實(shí)例,學(xué)會(huì)運(yùn)用兩點(diǎn)間的距離公式和坐標(biāo)法求有關(guān)距離、對(duì)稱(chēng)的問(wèn)題以及簡(jiǎn)單的平面幾何問(wèn)題的方法。3.激情投入,全力以赴,培養(yǎng)從特殊問(wèn)題開(kāi)始研究逐步過(guò)渡到研究一般問(wèn)題的思維方式。重點(diǎn):兩點(diǎn)
2024-12-10 20:52
【摘要】直線的兩點(diǎn)式方程一、教材分析本節(jié)課的關(guān)鍵是關(guān)于兩點(diǎn)式的推導(dǎo)以及斜率k不存在或斜率k=0時(shí)對(duì)兩點(diǎn)式的討論及變形.直線方程的兩點(diǎn)式可由點(diǎn)斜式導(dǎo)出.若已知兩點(diǎn)恰好在坐標(biāo)軸上(非原點(diǎn)),則可用兩點(diǎn)式的特例截距式寫(xiě)出直線的方程.由于由截距式方程可直接確定直線與x軸和y軸的交點(diǎn)的坐標(biāo),因此用截距式畫(huà)直線比較方便.在解決與截距有關(guān)或直線與坐
2024-12-21 03:39
【摘要】xo右手直角坐標(biāo)系空間直角坐標(biāo)系yz—Oxyz橫軸縱軸豎軸111空間直角坐標(biāo)系通過(guò)每?jī)蓚€(gè)坐標(biāo)軸的平面叫做坐標(biāo)平面,分別稱(chēng)為xOy平面、yOz平面、zOx平面.右手直角坐標(biāo)系:右手直角坐標(biāo)系以右手握住z軸,當(dāng)右手的
2024-11-30 12:11
【摘要】點(diǎn)到直線的距離【問(wèn)題設(shè)計(jì)】:①已知點(diǎn)P(x0,y0)和直線l:Ax+By+C=0,求點(diǎn)P到直線l的距離.你最容易想到的方法是什么?各種做法的優(yōu)缺點(diǎn)是什么?②前面我們是在A、B均不為零的假設(shè)下推導(dǎo)出公式的,若A、B中有一個(gè)為零,公式是否仍然成立?③回顧證明過(guò)程,同學(xué)們還有什么發(fā)現(xiàn)嗎?(如何求兩條平行線間的距離)【
2024-12-20 02:40
【摘要】§空間兩點(diǎn)間的距離公式一、教材分析平面直角坐標(biāo)系中,兩點(diǎn)之間的距離公式是學(xué)生已學(xué)的知識(shí),不難把平面上的知識(shí)推廣到空間,遵循從易到難、從特殊到一般的認(rèn)識(shí)過(guò)程,利用類(lèi)比的思想方法,借助勾股定理得到空間任意一點(diǎn)到原點(diǎn)的距離;從平面直角坐標(biāo)系中的方程x2+y2=r2表示以原點(diǎn)為圓心,r為半徑的圓,推廣到空間
2024-12-15 11:32
【摘要】目標(biāo):及推導(dǎo)方法,進(jìn)一步體會(huì)用代數(shù)方法解決幾何問(wèn)題的思想已知平面上兩點(diǎn)P1(x1,y1)和P2(x2,y2),如何點(diǎn)P1和P2的距離|P1P2|?xyP1(x1,y1)P2(x2,y2)O思考:求兩點(diǎn)A(0,2),B(0,-2)間的距離112233-1-1-2-2y
2025-06-15 07:49
【摘要】 平面上兩點(diǎn)間的距離教學(xué)目標(biāo):1.掌握平面上兩點(diǎn)間的距離公式,能運(yùn)用距離公式解決一些簡(jiǎn)單的問(wèn)題2.掌握中點(diǎn)坐標(biāo)公式,能運(yùn)用中點(diǎn)坐標(biāo)公式解決簡(jiǎn)單的問(wèn)題3.培養(yǎng)學(xué)生從特殊問(wèn)題開(kāi)始研究逐步過(guò)渡到研究一般問(wèn)題的思維方式教學(xué)重點(diǎn):掌握平面上兩點(diǎn)間的距離公式及運(yùn)用,中點(diǎn)坐標(biāo)公式的推導(dǎo)及運(yùn)用教學(xué)難點(diǎn):兩點(diǎn)間的距離公式的推導(dǎo),中點(diǎn)坐標(biāo)公式的推導(dǎo)及運(yùn)用教學(xué)過(guò)程:1.引入
2025-06-16 23:29
【摘要】問(wèn)題探究;,,,,,) ?。ǎ?,,,,,) ?。ň嚯x:兩點(diǎn),再求它們之間的,標(biāo)出:在空間直角坐標(biāo)系中 探究)753()106(2)413()532(11BABABA。與原點(diǎn)間的距離是,,一點(diǎn)中,任意:在空間直角坐標(biāo)系 探究________zyxpOxyz)(2表示什么圖形?,那么是定長(zhǎng):如果 探
【摘要】空間兩點(diǎn)間的距離【課時(shí)目標(biāo)】1.掌握空間兩點(diǎn)間的距離公式.2.能夠用空間兩點(diǎn)間距離公式解決簡(jiǎn)單的問(wèn)題.1.在空間直角坐標(biāo)系中,給定兩點(diǎn)P1(x1,y1,z1),P2(x2,y2,z2),則P1P2=______________________________________________________________
2024-12-17 10:19
【摘要】點(diǎn)到直線的距離學(xué)習(xí)目標(biāo):1、會(huì)應(yīng)用點(diǎn)到直線的距離公式求點(diǎn)到直線的距離。2、掌握兩條平行直線間的距離公式并會(huì)應(yīng)用。3、能綜合應(yīng)用平行與垂直的關(guān)系解決有關(guān)距離問(wèn)題。知識(shí)梳理自學(xué)檢測(cè)1、原點(diǎn)到直線3x+4y-26=0的距離是()A、7726B