【摘要】問題:你知道趙州橋嗎?它是1300多年前我國隋代建造的石拱橋,是我國古代人民勤勞與智慧的結(jié)晶.它的主橋是圓弧形,它的跨度(弧所對的弦的長)為,拱高(弧的中點到弦的距離)為,你能求出趙洲橋主橋拱的半徑嗎?趙州橋主橋拱的半徑是多少?第三章圓·OABCDE沿著圓的任意一條
2024-11-29 22:39
【摘要】勤學(xué)的人,總是感到時間過得太快;懶惰的人,卻總是埋怨時間跑得太慢。
2024-12-07 22:46
【摘要】垂徑定理檢測(時間45分鐘滿分100分)一.選擇題(每小題5分,共50分)1.(2017秋?新羅區(qū)校級期中)如圖,將半徑為4cm的圓折疊后,圓弧恰好經(jīng)過圓心,則折痕的長為()A.2B.4cmC.D.2.(2017?黔西南州)如圖,在⊙O
2024-11-27 16:25
【摘要】課題:垂徑定理課型:新授課年級:九年級教學(xué)目標(biāo):、垂徑定理及其逆定理的過程.、垂徑定理及其逆定理,并會運用其解決有關(guān)問題..進(jìn)一步體會和理解研究幾何圖形的各種方法.教學(xué)重點與難點:重點:探索圓的軸對稱性、垂徑定理及其逆定理的過程.難點:運用垂徑定理及其逆定理解決有關(guān)問題
2024-12-20 05:04
【摘要】EE
2025-06-23 05:17
【摘要】第三章圓知識點1垂徑定理及推論(A)①弦的垂直平分線經(jīng)過圓心;②平分弦的直徑垂直于弦;③平分弦的直徑平分弦所對的兩段弧.☉O中,弦AB的長為6,圓心O到AB的距離為4,則☉O的半徑為(C)3.(瀘州中考)如圖,AB是☉O的直徑,弦C
2025-06-26 12:05
【摘要】ODCBAM垂直于┗平分這條弦,并且平分弦所對的弧弦的直徑在⊙O中,直徑CD⊥弦AB∴AM=BM=AB21⌒AC=BC⌒⌒AD=BD⌒ODCBAM┗在⊙O中,直徑CD平分弦AB∴CD⊥AB⌒
2024-12-12 08:46
2025-06-23 21:28
【摘要】實踐探究把一個圓沿著它的任意一條直徑對折,重復(fù)幾次,你發(fā)現(xiàn)了什么?由此你能得到什么結(jié)論?圓是軸對稱圖形,判斷:任意一條直徑都是圓的對稱軸()X任何一條直徑所在的直線都是對稱軸。觀察并回答(1)兩條直徑AB、CD,CD平分AB嗎?(2)若把直徑AB向下平移,變成非直徑的弦,弦AB是否一
2025-08-04 05:18
【摘要】*垂徑定理第三章圓導(dǎo)入新課講授新課當(dāng)堂練習(xí)課堂小結(jié),了解圓是軸對稱圖形.垂直于弦的直徑的性質(zhì)和推論,并能應(yīng)用它解決一些簡單的計算、證明和作圖問題.(重點).(難點)學(xué)習(xí)目標(biāo)問題:你知道趙州橋嗎?它的主橋是圓弧形,它的跨度(弧所對的弦的長)為37m,拱高(弧的中點到弦的距離)為,你
2025-06-24 12:03
【摘要】湘教版九年級下冊第二章EAODBC問題:左圖中AB為圓O的直徑,CD為圓O的弦。相交于點E,當(dāng)弦CD在圓上運動的過程中有沒有特殊情況?運動CD直徑AB和弦CD互相垂直特殊情況在⊙O中,AB為弦,CD為直徑,AB⊥CD提問:你在圓中還能找到那些相等的量?并證明你猜得的結(jié)論。
2024-12-19 21:28
【摘要】請觀察下列三個銀行標(biāo)志有何共同點?圓的對稱性?圓是軸對稱圖形嗎?如果是,它的對稱軸是什么?你能找到多少條對稱軸?●O你是用什么方法解決上述問題的?圓的對稱性?圓是軸對稱圖形.圓的對稱軸是任意一條經(jīng)過圓心的直線,它有無數(shù)條對稱軸.●O可利用折疊的方法即可解決上述問題.注意:
2024-12-19 21:27
【摘要】北京師范大學(xué)出版社九年級|下冊第三章圓3垂徑定理【創(chuàng)設(shè)情境】問題1請拿出準(zhǔn)備好的囿形紙片,將其沿囿心所在的任一條直線對折,你會發(fā)現(xiàn)什么?多折幾次試一試.追問1:由折紙可知囿是軸對稱圖形嗎?追問2:如果是一個殘缺的囿形紙片,你能找到它的囿心嗎?北京師范大學(xué)出版社九年級|下冊
2025-06-26 20:15
2025-06-29 03:51