【摘要】1過(guò)兩點(diǎn)有且只有一條直線2兩點(diǎn)之間線段最短3同角或等角的補(bǔ)角相等4同角或等角的余角相等5過(guò)一點(diǎn)有且只有一條直線和已知直線垂直6直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短7平行公理經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行9同位角相等,兩直線平行10內(nèi)錯(cuò)角相等,兩直線平行
2025-08-14 03:51
【摘要】中考幾何題證明思路總結(jié)一、證明兩線段相等 ?!?。 ?!??!??!??!??!?。二、證明兩角相等 ?! ??! ?,底邊上的中線(或高)平分頂角?! ?nèi)錯(cuò)角或平行四邊形的對(duì)角相等?! 。ɑ虻冉牵┑挠嘟牵ɑ蜓a(bǔ)角)相等?! 。ɑ驁A)中,等弦(或弧)所對(duì)的圓心角相等,圓周角相等,弦切角等于它所夾的弧對(duì)的圓周角。三、證
2025-04-02 12:34
【摘要】第一篇:淺談初中幾何證明題教學(xué) 淺談初中幾何證明題教學(xué) 學(xué)習(xí)幾何對(duì)培養(yǎng)學(xué)生邏輯思維及邏輯推理能力有著特殊的作用。對(duì)于眾多的幾何證明題,幫助學(xué)生尋找證題方法和探求規(guī)律,對(duì)培養(yǎng)學(xué)生的證題推理能力,往往...
2024-10-29 06:03
【摘要】幾何證明、B、C在同一直線上,在直線AC的同側(cè)作和,連接AF,CE.取AF、CE的中點(diǎn)M、N,連接BM,BN,MN.(1)若和是等腰直角三角形,且(如圖1),則是 三角形.(2)在和中,若BA=BE,BC=BF,且,(如圖2),則是 三角形,且.(3)若將(2)中的繞點(diǎn)B旋轉(zhuǎn)一定角度,(如同3),其他條件不變,那么(2)中的結(jié)論是否成立?若成立,
【摘要】第一篇:幾何證明題 幾何證明題集(七年級(jí)下冊(cè)) 姓名:_________班級(jí):_______ 一、互補(bǔ)”。 E D 二、證明下列各題: 1、如圖,已知∠1=∠2,∠3=∠D,求證:DB/...
2024-10-27 12:50
【摘要】第一篇:談初中幾何證明題教學(xué)(模版) 談初中幾何證明題教學(xué) 眾所周知,幾何證明是初中數(shù)學(xué)學(xué)習(xí)的難點(diǎn)之一,其難就難在如何尋找證明思路,追根問(wèn)底還是因?yàn)閹缀巫C明題的本質(zhì)不易把握。為此,在初等幾何的學(xué)習(xí)...
2024-10-29 06:39
【摘要】第一篇:初中幾何基礎(chǔ)證明題(初一) 幾何證明題(1) ,AD∥BC,∠B=∠D,求證:AB∥CD。 A D C ⊥AB,EF⊥AB,∠1=∠2,求證:∠AGD=∠ACB。 A D /...
2024-10-29 01:53
【摘要】第一篇:談初中幾何證明題的入門(mén) 談初中幾何證明題的入門(mén) l初一了,學(xué)生開(kāi)始從實(shí)驗(yàn)幾何向論證幾何過(guò)渡。在之前,雖然學(xué)過(guò)一部分,但沒(méi)有格式上的特殊要求,只要能看懂圖形,根據(jù)圖形回答問(wèn)題,也就是說(shuō)初一是...
2024-11-03 22:01
【摘要】第一篇:初中幾何證明題 初中幾何證明題 己知M是△ABC邊BC上的中點(diǎn),,D,E分別為AB,AC上的點(diǎn),且DM⊥EM。 求證:BD+CE≥DE。 ,使MF=EM,連BF.∵BM=CM,∠BMF...
2024-10-29 01:21
【摘要】第一篇:幾何證明題訓(xùn)練 仁家教育---您可以相信的品牌! 仁家教育教案 百川東到海,何時(shí)復(fù)西歸? 少壯不努力,老大徒傷悲。 您的理解與支持是我們前進(jìn)最大的動(dòng)力!1 您的理解與支持是我們前進(jìn)...
2024-10-21 22:32
【摘要】第一篇:幾何證明題練習(xí) 幾何證明題練習(xí) ,Rt△ABC中AB=AC,點(diǎn)D、E是線段AC上兩動(dòng)點(diǎn),且AD=EC,AM⊥BD,垂足為M,AM的延長(zhǎng)線交BC于點(diǎn)N,直線BD與直線NE相交于點(diǎn)F。試判斷△...
2024-10-27 12:16
【摘要】初中幾何證明練習(xí)題1.如圖,在△ABC中,BF⊥AC,CG⊥AD,F(xiàn)、G是垂足,D、E分別是BC、FG的中點(diǎn),求證:DE⊥FG證明:連接DG、DF∵∠BGC=90°,BD=CD∴DG=BC同理DF=BC∴DG=DF又GE=FE∴DE⊥FG2.如圖,AE∥BC,D是BC的中點(diǎn),ED交AC于Q,ED的延長(zhǎng)線交AB的延長(zhǎng)線于P,求證:PD·Q
2025-04-02 12:35
【摘要】幾何證明題的知識(shí)點(diǎn)總結(jié)知識(shí)點(diǎn):一、線段垂直平分線(中垂線)性質(zhì)定理及其逆定理:定理:線段垂直平分線上的任意一點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等。逆定理:和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上。MPAB
2025-07-06 13:09
【摘要】第一篇:幾何證明題(難) 附加題: 1、已知:如圖,△ABC中,AG⊥BC于點(diǎn)G,以A為直角頂點(diǎn),分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過(guò)點(diǎn)E、F作射線GA的...
2024-10-21 22:37
【摘要】第一篇:幾何證明題大全 幾何證明題 ,BD,CE是邊AC,AB上的中點(diǎn),BD與CE相交于點(diǎn)O,BO與OD的長(zhǎng)度有什么關(guān)系?BC邊上的中線是否一定過(guò)點(diǎn)O?為什么? 答題要求:請(qǐng)寫(xiě)出詳細(xì)的證明過(guò)程,...
2024-10-22 00:16