【摘要】第一篇:初中幾何證明題 (1)如圖,在三角形ABC中,BD,CE是高,F(xiàn)G分別為ED,BC的中點,O是外心,求證AO∥FG問題補充: 證明:延長AO,交圓O于M,連接BM,則:∠ABM=90°,且...
2024-10-24 21:41
【摘要】第一篇:幾何證明題方法 (初中、高中)幾何證明題一些技巧 初中幾何證明技巧(分類) 證明兩線段相等 。 。 。 。 。 。 。 。*(或等圓)中等弧所對的弦或與圓心等距的兩弦或等...
2024-10-27 15:56
【摘要】中考解答下列各題一、證明題:1、在正方形ABCD中,AC為對角線,E為AC上一點,連接EB、ED并延長分別交AD、AB于F、G(1)求證:EF=EG;(2)當(dāng)∠BED=120°時,求∠EFD的度數(shù).AFDEBC2、已知:如圖,在正方形ABCD中,點E、F分別在BC和CD上,AE=AF.(
2025-04-02 12:13
【摘要】幾何證明◆典例精析【例題1】(天津)已知Rt△ABC中,∠ACB=90°,AC=6,BC=8.(1)如圖①,若半徑為r1的⊙O1是Rt△ABC的內(nèi)切圓,求r1;(2)如圖②,若半徑為r2的兩個等圓⊙O1、⊙O2外切,且⊙O1與AC、AB相切,⊙O2與BC、AB相切,求r2;(3)如圖③,當(dāng)n是大于2的正整數(shù)時,若半徑為rn的n個等
2025-04-02 06:14
【摘要】第一篇:中考幾何證明題復(fù)習(xí) 中考復(fù)習(xí) (二)中考復(fù)習(xí):幾何證明題 說明一:在直角三角形中,或是題中出現(xiàn)多個直角時,要證明兩個角相等,涉及到的知識點: 同角(或等角)的余角相等。 例1:已知:...
2024-10-15 17:33
【摘要】第一篇:初二幾何證明題 1如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過點A作BC的平行線交BE的延長線于F,且AF=DCCF.(1)求證:D是BC的中點;(2)如果AB=ACADCF的...
2024-10-21 22:41
【摘要】第一篇:初一幾何證明題 三角形 1、已知ΔABC,AD是BC邊上的中線。E在AB邊上,ED平分∠ADB。F在AC邊上,F(xiàn)D平分∠ADC。求證:BE+CF>EF。 1、已知ΔABC,BD是AC邊上...
2024-10-24 20:15
【摘要】第一篇:幾何證明題專題講解 幾何證明題專題講解 【知識精讀】 ,它對培養(yǎng)學(xué)生邏輯思維能力有著很大作用。幾何證明有兩種基本類型:一是平面圖形的數(shù)量關(guān)系;二是有關(guān)平面圖形的位置關(guān)系。這兩類問題常???..
2024-10-27 19:29
【摘要】第一篇:中考數(shù)學(xué)幾何證明題 中考數(shù)學(xué)幾何證明題 在?ABCD中,∠BAD的平分線交直線BC于點E,交直線DC于點F.(1)在圖1中證明CE=CF; (2)若∠ABC=90°,G是EF的中點(如圖...
2024-10-15 02:41
【摘要】第一篇:初一幾何證明題 初一《幾何》復(fù)習(xí)題2002--6—29姓名:一.填空題 1.過一點 2.過一點,有且只有直線與這條直線平行; 3.兩條直線相交的,它們的交點叫做;4.直線外一點與直線上...
2024-10-24 21:17
【摘要】第一篇:初中數(shù)學(xué)幾何證明題 平面幾何大題幾何是豐富的變換 多邊形平面幾何有兩種基本入手方式:從邊入手、從角入手 注意哪些角相等哪些邊相等,用標(biāo)記。進而看出哪些三角形全等。平行四邊形所有的判斷方式...
2024-10-29 00:09
【摘要】第一篇:初一幾何證明題 初一幾何證明題 一、1)D是三角形ABC的BC邊上的點且CD=AB,角ADB=角BAD,AE是三角形ABD的中線,求證AC=2AE。 (2)在直角三角形ABC中,角C=9...
2024-10-29 02:17
【摘要】第一篇:幾何證明題的技巧 幾何證明題的技巧 1)證明線段相等,角相等的題,通常找到線段所在圖形,證明全等 2)隱藏條件:比如特殊圖形的性質(zhì)自己要清楚,有些時候幾何題做不出來就是因為沒有利用好隱藏...
2024-10-21 22:38
【摘要】第一篇:初中數(shù)學(xué)幾何證明題 初中數(shù)學(xué)幾何證明題 分析已知、求證與圖形,探索證明的思路。 對于證明題,有三種思考方式: (1)正向思維。對于一般簡單的題目,我們正向思考,輕而易舉可以做出,這里就...
2024-10-24 21:36
【摘要】1過兩點有且只有一條直線2兩點之間線段最短3同角或等角的補角相等4同角或等角的余角相等5過一點有且只有一條直線和已知直線垂直6直線外一點與直線上各點連接的所有線段中,垂線段最短7平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行9同位角相等,兩直線平行10內(nèi)錯角相等,兩直線平行
2025-08-14 03:51