【摘要】廣州市育才中學2021-09學年高二數(shù)學選修1-1單元檢測題導數(shù)及其應用(B組:適合C類及以下學校使用)時間:120分鐘滿分:150分命題人:李葉秀鄧軍民一、選擇題(每小題5分,共50分)1、已知函數(shù)f(x)=ax2+c,且(1)f?=2,則a的值為()A.0
2024-12-12 13:02
【摘要】計算導數(shù)教學過程:一、復習1、導數(shù)的定義;2、導數(shù)的幾何意義;3、導函數(shù)的定義;4、求函數(shù)的導數(shù)的流程圖。(1)求函數(shù)的改變量)()(xfxxfy?????(2)求平均變化率xxfxxfxy???????)()((3)取極限,得導數(shù)/y=()fx??xyx????0lim本節(jié)課我們將
2024-12-01 20:36
【摘要】計算導數(shù)學習目標:能夠用導數(shù)的定義求幾個常用初等函數(shù)的導數(shù)。一、自學、思考、練習憶一憶:1、函數(shù)在一點處導數(shù)的定義;2、導數(shù)的幾何意義;[3、導函數(shù)的定義;4、求函數(shù)的導數(shù)的步驟。二、參與學習試一試:1、你能推導下列函數(shù)的導數(shù)嗎?(1)()fxc?(2)()fxx?(
2024-12-17 01:49
【摘要】第一章常用邏輯用語(時間90分鐘,滿分120分)一、選擇題(本大題共10小題,每小題5分共50分,在每小題給出的四個選項中,只有一項是符合題目要求的)1.下列語句是命題的為()A.你到過北京嗎?B.對頂角相等C.??!我太高興啦!D.x2+2x-1>0【解析】A是疑問句,C是感嘆句都不是命題,D
2024-12-01 23:20
【摘要】導數(shù)的幾何意義學習要求1.理解導數(shù)的幾何意義2.會用導數(shù)的定義求曲線的切線方程自學評價1、割線的斜率:已知)(xfy?圖像上兩點))(,(00xfxA,))(,(00xxfxxB????,過A,B兩點割線的斜率是_________,即曲線割線的斜率就是___________.2、函數(shù))(xfy?在點
2024-12-01 23:15
【摘要】綜合檢測(一)一、選擇題1.如果命題(綈p)∨(綈q)是假命題,則在下列各結(jié)論中:①命題p∧q是真命題;②命題p∧q是假命題;③命題p∨q是真命題;④命題p∨q是假命題.正確的為()A.①③B.②④C.②③
2024-12-01 10:27
【摘要】綜合檢測(二)一、選擇題1.下列結(jié)論錯誤的是()A.若“p∧q”與“綈p∨q”均為假命題,則p真q假B.命題“?x∈R,x2-x0”的否定是“?x∈R,x2-x≤0”C.“x=1”是“x2-3x+2=0”充分不必要條件
2024-12-15 11:30
【摘要】導數(shù)的概念及其幾何意義教學目標:1.導數(shù)的概念及幾何意義;2.求導的基本方法;3.導數(shù)的應用.教學重點:導數(shù)的綜合應用;教學難點:導數(shù)的綜合應用.一.知識梳理1.導數(shù)的概念及幾何意義.2.求導的基本方法①定義法:??xf?=????xxfxxfxyx????????
2024-12-01 23:16
【摘要】導數(shù)與函數(shù)的單調(diào)性一、學習目標1.會從幾何直觀探索并了解函數(shù)的單調(diào)性與其導數(shù)之間的關系,并會靈活應用;2.會用導數(shù)判斷或證明函數(shù)的單調(diào)性;3.通過對函數(shù)單調(diào)性的研究,加深對函數(shù)導數(shù)的理解,提高用導數(shù)解決實際問題的能力.二、學習重、難點靈活應用導數(shù)研究與函數(shù)單調(diào)性有關的問題,并能運用數(shù)形結(jié)合的思想方法.三、學習過程1.復
【摘要】第二章圓錐曲線與方程(時間90分鐘,滿分120分)一、選擇題(本大題共10小題,每小題5分共50分,在每小題給出的四個選項中,只有一項是符合題目要求的)1.(20212青島高二檢測)橢圓2x2+3y2=6的長軸長是()A.3B.2C.22D.2
2024-12-17 06:38
【摘要】導數(shù)的應用知識與技能:1.利用導數(shù)研究函數(shù)的切線、單調(diào)性、極大(?。┲狄约昂瘮?shù)在連續(xù)區(qū)間[a,b]上的最大(?。┲?;2.利用導數(shù)求解一些實際問題的最大值和最小值。過程與方法:1.通過研究函數(shù)的切線、單調(diào)性、極大(?。┲狄约昂瘮?shù)在連續(xù)區(qū)間[a,b]上的最大(?。┲担?/span>
2024-11-29 11:59
【摘要】導數(shù)的實際應用一、基礎過關1.煉油廠某分廠將原油精煉為汽油,需對原油進行冷卻和加熱,如果第x小時,原油溫度(單位:℃)為f(x)=13x3-x2+8(0≤x≤5),那么,原油溫度的瞬時變化率的最小值是()A.8C.-1D.-82.設底為等邊三角形的直三棱柱的體積為
【摘要】知識歸納:導數(shù)的計算一、幾個常用函數(shù)的導數(shù)1C′=0(C為常數(shù))2(xn)′=nxn-1(n∈Q)3(sinx)′=cosx4(cosx)′=-sinx=C(C是常數(shù)),求y′.解:y=f(x)=C,y=f(x+Δx)-f(x)=C-C=0,xy??=0.Y′=C′=xy
【摘要】導數(shù)在實際問題中的應用教學目的:1.進一步熟練函數(shù)的最大值與最小值的求法;⒉初步會解有關函數(shù)最大值、最小值的實際問題教學重點:解有關函數(shù)最大值、最小值的實際問題.教學難點:解有關函數(shù)最大值、最小值的實際問題.授課類型:新授課課時安排:1課時教具:多媒體、實物投影儀教學過
【摘要】章末檢測一、選擇題1.物體運動的方程為s=14t4-3,則t=5時的瞬時速度為()A.5B.25C.125D.6252.函數(shù)y=x2cosx的導數(shù)為()A.y′=2xcosx-x2sinxB.y′=2xcosx+x
2024-12-01 10:30