【摘要】線段的垂直平分線(1)我們?cè)?jīng)利用折紙的方法得到:線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)距離相等.你能證明這一結(jié)論嗎?定理:線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等已知:如圖,直線MN⊥AB,垂足是C,且AC=BC,P是MN上任意一點(diǎn).求證:PA=PB.ACB
2025-08-10 13:44
【摘要】哈五中問(wèn)題:如圖,A、B、C三個(gè)村莊合建一所學(xué)校,要求校址P點(diǎn)距離三個(gè)村莊都相等.請(qǐng)你幫助確定校址.???ABCABMNC??PMN?CABQ?ABMNP.Q.C?線段垂直平分線上的點(diǎn)和這條線
2024-11-21 05:26
【摘要】線段的垂直平分線關(guān)店中學(xué)繆培威海市政府為了方便居民的生活,計(jì)劃在三個(gè)住宅小區(qū)A、B、C之間修建一個(gè)購(gòu)物中心,試問(wèn),該購(gòu)物中心應(yīng)建于何處,才能使得它到三個(gè)小區(qū)的距離相等。ABC實(shí)際問(wèn)題1煙威高速公路實(shí)際問(wèn)題2在煙威高速公路L的同側(cè),有兩個(gè)化工廠
2024-12-06 15:53
【摘要】典型例題例1.如圖,已知:在中,,,BD平分交AC于D.求證:D在AB的垂直平分線上.分析:根據(jù)線段垂直平分線的逆定理,欲證D在AB的垂直平分線上,只需證明即可.證明:∵,(已知),∴(的兩個(gè)銳角互余)又∵BD平分(已知)∴.∴(等角對(duì)等邊)∴D在AB的垂直平分線上(和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上).例2.如圖,已知
2025-04-03 07:09
【摘要】普陀區(qū)政府為了方便居民的生活,計(jì)劃在三個(gè)住宅小區(qū)A、B、C之間修建一個(gè)購(gòu)物中心,請(qǐng)你規(guī)劃一下,該購(gòu)物中心應(yīng)建于何處,才能使它到三個(gè)小區(qū)的距離相等?ABC問(wèn)題?ABPMNPA=PBC直線MN⊥AB,垂足為C,且AC=CB.P1P1A=P1B……
2025-05-26 03:49
【摘要】第一章三角形的證明線段的垂直平分線第2課時(shí)線段垂直平分線的應(yīng)用1課堂講解?三角形三邊的垂直平分線?線段垂直平分線的作圖及應(yīng)用2課時(shí)流程逐點(diǎn)導(dǎo)講練課堂小結(jié)作業(yè)提升線段的垂直平分線的性質(zhì)與判定的內(nèi)容是什么?復(fù)習(xí)回顧1知識(shí)點(diǎn)三角形三邊的垂直平分
2025-01-03 01:26
【摘要】線段的垂直平分線(二)名山街道中學(xué)八年級(jí)數(shù)學(xué)備課組(二)學(xué)習(xí)目標(biāo)1.會(huì)進(jìn)行線段垂直平分線的尺規(guī)作圖。2.能作出軸對(duì)稱圖形的對(duì)稱軸。一、新課導(dǎo)入有時(shí)我們感覺(jué)兩個(gè)圖形是軸對(duì)稱的,如何驗(yàn)證呢?不折疊圖形,你能比較準(zhǔn)確地作出軸對(duì)稱圖形的對(duì)稱軸嗎?二、自學(xué)教材教材第62—64頁(yè)止。?
2024-10-12 12:31
【摘要】正文:《線段的垂直平分線》教學(xué)反思 《線段的垂直平分線》教學(xué)反思 《線段的垂直平分線》教學(xué)反思1 線段垂直平分線在幾何作圖、證明、計(jì)算中有著十分重要的作用。線段的垂直平分線的性質(zhì)定理是推證線段相...
2024-11-16 03:27
【摘要】八年級(jí)上冊(cè)軸對(duì)稱(第2課時(shí))課件說(shuō)明?本節(jié)課內(nèi)容屬于“圖形與幾何”領(lǐng)域,是在學(xué)習(xí)了軸對(duì)稱的概念和性質(zhì)的基礎(chǔ)上,研究線段垂直平分線的性質(zhì)和判定.?學(xué)習(xí)目標(biāo):1.理解線段垂直平分線的性質(zhì)和判定.2.能運(yùn)用線段垂直平分線的性質(zhì)和判定解決實(shí)際問(wèn)題.3.會(huì)用尺規(guī)經(jīng)過(guò)已知
2025-06-21 18:27
【摘要】垂直平分線角平分線綜合應(yīng)用 一.解答題(共30小題)1.如圖,已知∠BAC=90°,AD⊥BC于點(diǎn)D,∠1=∠2,EF∥BC交AC于點(diǎn)F.試說(shuō)明AE=CF.2.如圖,四邊形ABCD中,∠B=90°,AB∥CD,M為BC邊上的一點(diǎn),且AM平分∠BAD,DM平分∠ADC.求證:(1)AM⊥DM;(2)M為BC的中點(diǎn).3.已知:如圖,D是等
2025-07-08 10:55
【摘要】九年級(jí)數(shù)學(xué)(上冊(cè))第一章證明(二)(1)性質(zhì)定理與判定定理駛向勝利的彼岸線段的垂直平分線?我們?cè)?jīng)利用折紙的方法得到:?線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)距離相等.?你能證明這一結(jié)論嗎?回顧思考已知:如圖,AC=BC,MN⊥AB,P是MN上任意一點(diǎn).求證:PA=PB.
2024-12-12 14:41
【摘要】第一章三角形的證明線段的垂直平分線第1課時(shí)線段垂直平分線的性質(zhì)與判定1課堂講解?線段的垂直平分線的性質(zhì)?線段的垂直平分線的判定2課時(shí)流程逐點(diǎn)導(dǎo)講練課堂小結(jié)作業(yè)提升線段是軸對(duì)稱圖形嗎?它的對(duì)稱軸是什么?什么叫線段的垂直平分線?回顧舊知1知識(shí)點(diǎn)線段
2025-01-04 01:23
【摘要】九年級(jí)數(shù)學(xué)(上冊(cè))第一章證明(二)(2)三角形的垂心駛向勝利的彼岸線段的垂直平分線的作法?已知:線段AB,如圖.?求作:線段AB的垂直平分線.?作法:?用尺規(guī)作線段的垂直平分線.?A和B為圓心,以大于AB/2長(zhǎng)為半徑作弧,兩弧交于點(diǎn)C和D.ABCD?2.作直
2024-12-03 20:54
【摘要】垂直平分線角平分線培優(yōu)提高練習(xí)一.選擇題(共6小題)1.如果三角形內(nèi)有一點(diǎn)到三邊距離相等,且到三頂點(diǎn)的距離也相等,那么這個(gè)三角形的形狀是( )A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等邊三角形2.下列各語(yǔ)句中不正確的是( ?。〢.全等三角形的周長(zhǎng)相等B.全等三角形的對(duì)應(yīng)角相等C.到角的兩邊距離相等的點(diǎn)在這
2025-04-03 00:08
【摘要】垂直平分線1.三角形中,一條邊的垂直平分線恰好經(jīng)過(guò)三角形的另一個(gè)頂點(diǎn),那么這個(gè)三角形一定是().A.直角三角形B.等腰三角形C.等邊三角形D.等腰直角三角形2.如圖,△ABC中,∠BAC=100°,DE,F(xiàn)G分別為AB,AC的垂直平分線,如果BC=16cm,那么△AEG的周長(zhǎng)為_(kāi)___
2024-12-05 13:46