【摘要】線段的垂直平分線關(guān)店中學(xué)繆培威海市政府為了方便居民的生活,計(jì)劃在三個(gè)住宅小區(qū)A、B、C之間修建一個(gè)購(gòu)物中心,試問,該購(gòu)物中心應(yīng)建于何處,才能使得它到三個(gè)小區(qū)的距離相等。ABC實(shí)際問題1煙威高速公路實(shí)際問題2在煙威高速公路L的同側(cè),有兩個(gè)化工廠
2024-12-06 15:53
【摘要】線段的垂直平分線(2)復(fù)習(xí)回顧我們把垂直且平分一條線段的直線叫作這條線段的垂直平分線.性質(zhì)1:線段垂直平分線上的點(diǎn)到線段兩端的距離相等.性質(zhì)2:到線段兩端距離相等的點(diǎn)在線段的垂直平分線上.想一想如何過一點(diǎn)P作已知直線l的垂線呢?分析:由于兩點(diǎn)確定一條直線,因此我們可以通過在已知直線上作
2025-01-03 17:43
【摘要】普陀區(qū)政府為了方便居民的生活,計(jì)劃在三個(gè)住宅小區(qū)A、B、C之間修建一個(gè)購(gòu)物中心,請(qǐng)你規(guī)劃一下,該購(gòu)物中心應(yīng)建于何處,才能使它到三個(gè)小區(qū)的距離相等?ABC問題?ABPMNPA=PBC直線MN⊥AB,垂足為C,且AC=CB.P1P1A=P1B……
2025-05-26 03:49
【摘要】第一章三角形的證明線段的垂直平分線第2課時(shí)線段垂直平分線的應(yīng)用1課堂講解?三角形三邊的垂直平分線?線段垂直平分線的作圖及應(yīng)用2課時(shí)流程逐點(diǎn)導(dǎo)講練課堂小結(jié)作業(yè)提升線段的垂直平分線的性質(zhì)與判定的內(nèi)容是什么?復(fù)習(xí)回顧1知識(shí)點(diǎn)三角形三邊的垂直平分
2025-01-03 01:26
【摘要】線段的垂直平分線(二)名山街道中學(xué)八年級(jí)數(shù)學(xué)備課組(二)學(xué)習(xí)目標(biāo)1.會(huì)進(jìn)行線段垂直平分線的尺規(guī)作圖。2.能作出軸對(duì)稱圖形的對(duì)稱軸。一、新課導(dǎo)入有時(shí)我們感覺兩個(gè)圖形是軸對(duì)稱的,如何驗(yàn)證呢?不折疊圖形,你能比較準(zhǔn)確地作出軸對(duì)稱圖形的對(duì)稱軸嗎?二、自學(xué)教材教材第62—64頁(yè)止。?
2024-10-12 12:31
【摘要】線段的垂直平分線(1)觀察如圖,人字形屋頂?shù)目蚣苤?,點(diǎn)A與點(diǎn)A′關(guān)于線段CD所在的直線l對(duì)稱,問線段CD所在的直線l與線段AA′有什么關(guān)系???⊥AD=ADlAA.,發(fā)現(xiàn):我們可以把人字形屋頂框架圖進(jìn)行簡(jiǎn)化得到下圖.已知點(diǎn)A與點(diǎn)A′關(guān)于直線l對(duì)稱,如果沿直線l折疊,則點(diǎn)A與
2025-01-05 20:28
【摘要】復(fù)習(xí)回顧?1、什么叫線段的垂直平分線??2、線段垂直平分線的性質(zhì)有哪些??3、如何用尺規(guī)作圖法作一條線段的垂直平分線??4、自己用尺規(guī)作圖法作一條線段的垂直平分線?(基本作圖3)?已知線段AB,畫出它的垂直平分線.說出你的作圖思路這也是一個(gè)最基本的尺規(guī)作圖作法:(1)分別
2025-01-07 05:09
【摘要】線段的垂直平分線?等腰三角形頂角平分線有哪些性質(zhì)?垂直底邊,并且平分底邊垂直平分線垂直且平分一條線段的直線是這條線段的垂直平分線.?如圖:直線MN是線段AB的垂直平分線,點(diǎn)C為垂足,請(qǐng)問在圖形中哪些線段相等?為什么??三角形三條邊上的垂直平分線有幾個(gè)交點(diǎn),請(qǐng)畫出圖形并說明你的理由。?村莊A、B都在小河
2024-10-28 12:33
【摘要】線段的垂直平分線(第2課時(shí))北師大版八年級(jí)數(shù)學(xué)下冊(cè)導(dǎo)入新知ABCD..性質(zhì):線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等.判定:到一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上.1.理解并掌握三角形三邊的垂直平分線
2025-01-04 02:23
【摘要】.......1、線段垂直平分線的性質(zhì)(1)垂直平分線性質(zhì)定理:線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等.定理的作用:證明兩條線段相等(2)線段關(guān)于它的垂直平分線對(duì)稱.3、關(guān)于三角形三邊垂直平分線的定理
2025-07-06 22:15
【摘要】垂直平分線,它們的
2025-03-18 14:29
【摘要】八年級(jí)上冊(cè)軸對(duì)稱(第2課時(shí))課件說明?本節(jié)課內(nèi)容屬于“圖形與幾何”領(lǐng)域,是在學(xué)習(xí)了軸對(duì)稱的概念和性質(zhì)的基礎(chǔ)上,研究線段垂直平分線的性質(zhì)和判定.?學(xué)習(xí)目標(biāo):1.理解線段垂直平分線的性質(zhì)和判定.2.能運(yùn)用線段垂直平分線的性質(zhì)和判定解決實(shí)際問題.3.會(huì)用尺規(guī)經(jīng)過已知
2025-06-21 18:27
【摘要】線段的垂直平分線(一)把一個(gè)圖形以某一條直線為對(duì)稱軸,經(jīng)過,如果它能夠,那么就說這兩個(gè)圖形關(guān)于這條直線對(duì)稱,這條直線叫做對(duì)稱軸,折疊后重合的點(diǎn)是對(duì)應(yīng)點(diǎn),叫做。A′ABCB′C′與另一個(gè)圖形重合對(duì)稱點(diǎn)軸對(duì)
【摘要】典型例題例1.如圖,已知:在中,,,BD平分交AC于D.求證:D在AB的垂直平分線上.分析:根據(jù)線段垂直平分線的逆定理,欲證D在AB的垂直平分線上,只需證明即可.證明:∵,(已知),∴(的兩個(gè)銳角互余)又∵BD平分(已知)∴.∴(等角對(duì)等邊)∴D在AB的垂直平分線上(和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上).例2.如圖,已知
2025-04-03 07:09
【摘要】線段的垂直平分線教學(xué)設(shè)計(jì)教學(xué)內(nèi)容分析:這節(jié)課是把電子白板與幾何畫板結(jié)合的一節(jié)新授課。線段的垂直平分線是對(duì)前一課時(shí)關(guān)于軸對(duì)稱圖形性質(zhì)的再認(rèn)識(shí),又是今后幾何作圖、證明、計(jì)算的基礎(chǔ)。學(xué)習(xí)過程中滲透的轉(zhuǎn)化、探索、歸納等數(shù)學(xué)思想方法對(duì)學(xué)生今后的數(shù)學(xué)學(xué)習(xí)也有重要的意義。學(xué)習(xí)線段垂直平分線相關(guān)知識(shí)是為學(xué)生創(chuàng)造了一次探究的機(jī)會(huì),是學(xué)習(xí)幾何學(xué)的一次磨練。課題:線段的垂直平分線學(xué)習(xí)目標(biāo)
2025-04-26 08:11