【摘要】第二章解三角形課標(biāo)要求:本章的中心內(nèi)容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落實(shí)在解三角形的應(yīng)用上。通過本章學(xué)習(xí),學(xué)生應(yīng)當(dāng)達(dá)到以下學(xué)習(xí)目標(biāo):(1)通過對(duì)任意三角形邊長(zhǎng)和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡(jiǎn)單的三角形度量問題。(2)能夠熟練運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些與測(cè)量和幾何計(jì)算有關(guān)的生活實(shí)
2024-12-01 08:01
【摘要】余弦定理(一)課時(shí)目標(biāo);.1.余弦定理三角形任何一邊的________等于其他兩邊________的和減去這兩邊與它們的________的余弦的積的________.即a2=________________,b2=________________,c2=____.2.余弦定理的推論cosA=_______
2024-12-17 06:34
【摘要】第一篇:高中數(shù)學(xué)§1正弦定理與余弦定理()教案北師大版必修5 §1正弦定理、余弦定理 教學(xué)目的: ⑴使學(xué)生掌握正弦定理教學(xué)重點(diǎn):正弦定理 教學(xué)難點(diǎn):正弦定理的正確理解和熟練運(yùn)用 授課類型:新...
2024-11-06 22:00
【摘要】正、余弦定理在實(shí)際生活中的應(yīng)用正、余弦定理在測(cè)量、航海、物理、幾何、天體運(yùn)行等方面的應(yīng)用十分廣泛,解這類應(yīng)用題需要我們吃透題意,對(duì)專業(yè)名詞、術(shù)語要能正確理解,能將實(shí)際問題歸結(jié)為數(shù)學(xué)問題.求解此類問題的大概步驟為:(1)準(zhǔn)確理解題意,分清已知與所求,準(zhǔn)確理解應(yīng)用題中的有關(guān)名稱、術(shù)語,如仰角、俯角、視角、象限角、方位角等;(2)根據(jù)題意畫出圖形;(3)將要求解的
2024-12-15 03:12
【摘要】解三角形第二章§1正弦定理與余弦定理第二章第2課時(shí)余弦定理課堂典例講練2易混易錯(cuò)點(diǎn)睛3課時(shí)作業(yè)5課前自主預(yù)習(xí)1本節(jié)思維導(dǎo)圖4課前自主預(yù)習(xí)中國(guó)海監(jiān)船肩負(fù)著我國(guó)海域的維權(quán)、執(zhí)法使命.某時(shí)某中國(guó)海監(jiān)船位于中國(guó)南海的A處,與我國(guó)海島B相距s海里.據(jù)觀測(cè)
2024-11-29 03:39
【摘要】課題:余弦定理(2)班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】運(yùn)用余弦定理解決一些與測(cè)量和幾何計(jì)算有關(guān)的實(shí)際問題【課前預(yù)習(xí)】1.在ABC?中,5?AB,7?AC,8?BC,則??BCAB____________________.2.已知Cabsin?
2024-12-02 01:05
【摘要】【步步高學(xué)案導(dǎo)學(xué)設(shè)計(jì)】2021-2021學(xué)年高中數(shù)學(xué)第二章解析幾何初步章末總結(jié)北師大版必修2一、數(shù)形結(jié)合思想數(shù)形結(jié)合思想,其實(shí)質(zhì)是將抽象的數(shù)學(xué)語言與直觀的圖形結(jié)合起來,即把代數(shù)中的“數(shù)”與幾何上的“形”結(jié)合起來認(rèn)識(shí)問題、理解問題并解決問題的思維方法.?dāng)?shù)形結(jié)合一般包括兩個(gè)方面,即以“形”助“數(shù)”
2024-12-16 23:45
【摘要】第一篇:高中數(shù)學(xué)《余弦定理》教案2蘇教版必修5 第2課時(shí)余弦定理 【學(xué)習(xí)導(dǎo)航】 知識(shí)網(wǎng)絡(luò) 余弦定理ì航運(yùn)問題中的應(yīng)用 í ?判斷三角形的形狀 學(xué)習(xí)要求 1.能把一些簡(jiǎn)單的實(shí)際問題轉(zhuǎn)化為...
2024-10-28 16:14
【摘要】12直角三角形中的邊角關(guān)系:CBAabc1、角的關(guān)系:A+B+C=180°A+B=C=90°2、邊的關(guān)系:a2+b2=c23、邊角關(guān)系:sinA=—=cosBsinB=—=cosAacbc復(fù)習(xí)3CBAabc
2025-01-15 16:31
【摘要】余弦定理復(fù)習(xí)回顧RCcBbAa2sinsinsin???baCAB(1)已知三角形的兩角和任一邊,求其它兩邊和另一角;(2)已知三角形的兩邊和其中一邊的對(duì)角,求另一邊的對(duì)角(從而進(jìn)一步求出其它的邊和角).第二種情況若知道的是大邊的對(duì)角,只有唯一的一組解;若給出的是小邊的對(duì)角,則結(jié)
2024-11-29 23:32
【摘要】第四課時(shí)余弦定理(二)一、學(xué)習(xí)目標(biāo):、余弦定理在解決各類三角形中的應(yīng)用。、余弦定理應(yīng)用范圍的認(rèn)識(shí),處理問題時(shí)能選擇較為簡(jiǎn)捷的方法。3,。通過訓(xùn)練培養(yǎng)學(xué)生的分類討論,數(shù)形結(jié)合,優(yōu)化選擇等思想。二、學(xué)習(xí)重難點(diǎn):重點(diǎn):正、余弦定理的綜合運(yùn)用.難點(diǎn):、余弦定理與三角形性質(zhì)的結(jié)合;、余弦定理的聯(lián)系.三、自主預(yù)習(xí):四、能力技能交流:活動(dòng)一、靈活應(yīng)用
2025-06-16 23:27
【摘要】第2課時(shí)余弦定理知能目標(biāo)解讀,掌握余弦定理,理解用數(shù)量積推導(dǎo)余弦定理的過程,并體會(huì)向量在解決三角形的度量問題時(shí)的作用..,并會(huì)用余弦定理解決“已知三邊求三角形的三角”及“已知兩邊及其夾角求三角形中其他的邊和角”等問題..重點(diǎn)難點(diǎn)點(diǎn)撥重點(diǎn):余弦定理的證明及其應(yīng)用.難點(diǎn):處理三角形問題恰當(dāng)?shù)剡x擇正弦定理
2024-12-01 19:36
【摘要】第二章解析幾何初步(A)(時(shí)間:120分鐘滿分:150分)一、選擇題(本大題共12小題,每小題5分,共60分)1.下列敘述中不正確的是()A.若直線的斜率存在,則必有傾斜角與之對(duì)應(yīng)B.每一條直線都有唯一對(duì)應(yīng)的傾斜角C.與坐標(biāo)軸垂直的直線的傾斜角為0°或90°D.若直線的傾
2024-12-16 20:38
【摘要】余弦定理(二)自主學(xué)習(xí)知識(shí)梳理1.在△ABC中,邊a、b、c所對(duì)的角分別為A、B、C,則有:(1)A+B+C=________,A+B2=____________.(2)sin(A+B)=__________,cos(A+B)=__________,tan(A+B)=_______
2024-12-01 23:20
【摘要】余弦定理(二)課時(shí)目標(biāo)、余弦定理;、余弦定理解三角形的有關(guān)問題.1.正弦定理及其變形(1)asinA=bsinB=csinC=______.(2)a=__________,b=__________,c=__________.(3)sinA=__________,sinB=__________,
2024-12-17 10:14