【摘要】2、求最大(最?。┲祽?yīng)用題的一般方法:(1)分析實際問題中各量之間的關(guān)系,把實際問題化為數(shù)學(xué)問題,建立函數(shù)關(guān)系式,這是關(guān)鍵一步;(2)確定函數(shù)定義域,并求出極值點;(3)比較各極值與定義域端點函數(shù)的大小,結(jié)合實際,確定最值或最值點.1、實際應(yīng)用問題的表現(xiàn)形式,常常不是以純數(shù)學(xué)模式反映出來:首先,通過審題,認識問題的背景,抽象出問題的實質(zhì);
2024-11-30 01:22
【摘要】生活中的優(yōu)化問題舉例新課引入:導(dǎo)數(shù)在實際生活中有著廣泛的應(yīng)用,利用導(dǎo)數(shù)求最值的方法,可以求出實際生活中的某些最值問題..(面積和體積等的最值)(利潤方面最值)(功和功率等最值)例1.海報版面尺寸的設(shè)計學(xué)校或班級舉行活動,通常需要張貼海報進行宣傳?,F(xiàn)讓你設(shè)計一張如圖,要求版心面積為
2024-11-30 12:15
【摘要】(第一課時)單縣一中時克然多米諾骨牌問題情境一已知數(shù)列的通項公式為}{na22)55(???nnan(1)求出其前四項,你能得到什么樣的猜想?(2)你的猜想正確嗎?對于數(shù)列{},na)1(2111????nnnaaa)∈(*Nn
2024-11-29 12:01
【摘要】定積分的概念:在直角坐標系中,由連續(xù)曲線y=f(x),直線x=a、x=b及x軸所圍成的圖形叫做曲邊梯形。Oxyaby=f(x)一.求曲邊梯形的面積x=ax=b因此,我們可以用這條直線L來代替點P附近的曲線,也就是說:在點P附近,曲線可以看作直線(即在很小范圍內(nèi)
【摘要】函數(shù)的極值與導(dǎo)數(shù)(a,b)內(nèi),如果,那么函數(shù)在這個區(qū)間內(nèi)單調(diào)遞增;如果,那么函數(shù)在這個區(qū)間內(nèi)單調(diào)遞減.0)(??xf)(xfy?0)(??xf)(xfy?2.對x∈(a,b),如果
2024-11-30 12:13
【摘要】2020/12/2511、最值的概念(最大值與最小值)如果在函數(shù)定義域I內(nèi)存在x0,使得對任意的x∈I,總有f(x)≤f(x0),則稱f(x0)為函數(shù)f(x)在定義域上的最大值;最值是相對函數(shù)定義域整體而言的.如果在函數(shù)定義域I內(nèi)存在x0,使得對任意的x∈I,總有f(x)≥f(x0),則稱f(x0)為
2024-11-30 08:46
【摘要】建立數(shù)學(xué)模型§生活中的優(yōu)化問題舉例(2課時)教學(xué)目標:1.使利潤最大、用料最省、效率最高等優(yōu)化問題,體會導(dǎo)數(shù)在解決實際問題中的作用2.提高將實際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力教學(xué)重點:利用導(dǎo)數(shù)解決生活中的一些優(yōu)化問題.教學(xué)難點:利用導(dǎo)數(shù)解決生活中的一些優(yōu)化問題.教學(xué)過程:一.創(chuàng)設(shè)情景
2024-12-20 01:49
【摘要】微積分基本定理定理(微積分基本定理)如果()fx是在區(qū)間],[ba上的連續(xù)函數(shù),并且()(),Fxfx??,則)()()(aFbFdxxfba???.記:()()()|baFbFaFx??則:()()|()()bbaafxdxFxF
【摘要】變化率問題一個變量相對于另一個變量的變化而變化的快慢程度叫做變化率.問題1氣球膨脹率我們都吹過氣球回憶一下吹氣球的過程,可以發(fā)現(xiàn),隨著氣球內(nèi)空氣容量的增加,氣球的半徑增加越來越慢.從數(shù)學(xué)角度,如何描述這種現(xiàn)象呢?問題1氣球膨脹率
【摘要】定積分的簡單應(yīng)用定積分在物理中的應(yīng)用問題提出v=v(t)作變速直線運動的物體,在a≤t≤b時段內(nèi)行駛的路程s等于什么?1lim()()nbinaibasvvtdtnx=-==?ò物體在某時段內(nèi)的路程,利用微積分基本定理可以求定
【摘要】要甜的,好吃的!從前有一位富翁想吃芒果,打發(fā)他的仆人到果園去買,并告訴他:"要甜的,好吃的,你才買."仆人拿好錢就去了.到了果園,園主說:"我這里樹上的芒果個個都是甜的,你嘗一個看."仆人說:"我嘗一個怎能知道全體呢我應(yīng)當個個都嘗過,嘗一個買一個,這樣最可
【摘要】《直接證明與間接證明-反證法》教學(xué)目標?結(jié)合已經(jīng)學(xué)過的數(shù)學(xué)實例,了解間接證明的一種基本方法——反證法;了解反證法的思考過程、特點.?教學(xué)重點:會用反證法證明問題;了解反證法的思考過程.?教學(xué)難點:根據(jù)問題的特點,選擇適當?shù)淖C明方法.經(jīng)過證明的結(jié)論一般地,從要證明的結(jié)論出發(fā),逐步尋求推證過程
【摘要】舜耕中學(xué)高一數(shù)學(xué)選修1—1導(dǎo)學(xué)案(教師版)編號:23等級:周次上課時間月日周課型新授課主備人胡安濤使用人課題教學(xué)目標,正確設(shè)定所求最大值或最小值的變量y與自變量x,把實際問題轉(zhuǎn)化為數(shù)學(xué)問題,即列出函數(shù)解析式()yfx?,根據(jù)實際問題確定函數(shù)()yf
2024-12-02 03:14
【摘要】新課標人教版課件系列《高中數(shù)學(xué)》選修2-2《數(shù)學(xué)歸納法》教學(xué)目標?了解數(shù)學(xué)歸納法的原理,能用數(shù)學(xué)歸納法證明一些簡單的數(shù)學(xué)命題。?教學(xué)重點:?了解數(shù)學(xué)歸納法的原理第一課時一、歸納法對于某類事物,由它的一些特殊事例或其全部可能情況,歸納出一般結(jié)論的推理方法,叫歸納法。歸納法{
2024-11-29 17:34
【摘要】復(fù)數(shù)的概念教學(xué)目標:1.理解復(fù)數(shù)的有關(guān)概念以及符號表示;2.掌握復(fù)數(shù)的代數(shù)形式和幾何表示法,理解復(fù)平面、實軸、虛軸等概念的意義掌握復(fù)數(shù)集C與復(fù)平面內(nèi)所有點成一一對應(yīng);3.理解共軛復(fù)數(shù)的概念,了解共軛復(fù)數(shù)的幾個簡單性質(zhì).教學(xué)重點:復(fù)數(shù)的有關(guān)概念,復(fù)數(shù)的表示和共軛復(fù)數(shù)的概念;教學(xué)難點:復(fù)數(shù)概念的理解,復(fù)數(shù)與復(fù)平面上點一一
2024-12-01 22:43