【摘要】微分方程例題選解1.求解微分方程。解:原方程化為,通解為由,,得,所求特解為。2.求解微分方程。解:令,,原方程化為,分離變量得,積分得,原方程的通解為。3.求解微分方程。解:此題為全微分方程。下面利用“湊微分”的方法求解。原方程化為,由,得,
2025-08-02 09:11
【摘要】二階線性微分方程)()()(22xfyxQdxdyxPdxyd???時(shí),當(dāng)0)(?xf二階線性齊次微分方程時(shí),當(dāng)0)(?xf二階線性非齊次微分方程n階線性微分方程).()()()(1)1(1)(xfyxPyxPyxPynnnn?????????第六節(jié)線性微分方程解的結(jié)構(gòu)])[(11?
2025-01-28 08:36
【摘要】[原創(chuàng)]偏微分方程數(shù)值解法的MATLAB源碼【更新完畢】說明:由于偏微分的程序都比較長(zhǎng),比其他的算法稍復(fù)雜一些,所以另開一貼,專門上傳偏微分的程序謝謝大家的支持!其他的數(shù)值算法見:..//Announce/?BoardID=209&id=82450041、古典顯式格式求解拋物型偏微分方程(一維熱傳導(dǎo)方程)function[Uxt]=PDEPara
2025-06-28 22:12
【摘要】這一部分里,我們將看到以下內(nèi)容?幾個(gè)典型物理問題及其數(shù)學(xué)描述(微分方程和定解條件)?微分方程的類型?微分方程的邊界條件?微分方程及其邊界條件的等效積分原理幾個(gè)典型的問題?弦振動(dòng)問題的微分方程及定解條件?傳熱問題的微分方程及定解條件?位勢(shì)方程及定解條件弦是一種抽象模型,工程實(shí)際中,可以模擬繩鎖、
2025-05-27 04:17
【摘要】演示課件之三微分方程解的性態(tài)演示實(shí)驗(yàn)一、Lorenz微分方程模型實(shí)驗(yàn)?zāi)康淖寣W(xué)生觀察常微分方程組解的某些特征,從而揭示其中的數(shù)學(xué)規(guī)律和奧妙!著名的Lorenz微分方程模型:假定參數(shù)分別取值為:β=8/3,σ=10,ρ=28
2024-10-10 14:58
【摘要】西南科技大學(xué)理學(xué)院1第五講全微分方程與積分因子三、積分因子法一、全微分方程與原函數(shù)二、全微分方程判定定理與不定積分法四、小結(jié)西南科技大學(xué)理學(xué)院2定義:即(,)(,)(,)duxyMxydxNxydy??(
2024-10-25 21:13
【摘要】一、二階線性微分方程解的結(jié)構(gòu)第四模塊微積分學(xué)的應(yīng)用第十三節(jié)二階常系數(shù)線性微分方程二、二階常系數(shù)線性微分方程的解法三、應(yīng)用舉例一、二階線性微分方程解的結(jié)構(gòu)二階微分方程的如下形式y(tǒng)?+p(x)y?+q(x)y=f(x)稱為二階線性微分方程,簡(jiǎn)稱二階線性方程.
2025-01-29 02:03
【摘要】數(shù)學(xué)與計(jì)算科學(xué)學(xué)院實(shí)驗(yàn)報(bào)告實(shí)驗(yàn)項(xiàng)目名稱Eular方法求解一階常微分方程數(shù)值解所屬課程名稱偏微分方程數(shù)值解實(shí)驗(yàn)類型驗(yàn)證性實(shí)驗(yàn)日期20
2025-08-02 00:27
【摘要】第三章微分方程模型一、微分方程知識(shí)簡(jiǎn)介我們要掌握常微分方程的一些基礎(chǔ)知識(shí),對(duì)一些可以求解的微分方程及其方程組,要求掌握其解法,并了解一些方程的近似解法。微分方程的體系:(1)初等積分法(一階方程及幾類可降階為一階的方程)(2)一階線性微分方程組(常系數(shù)線性微分方程組的解法)(3)高階線性微分方程(高階線性常系數(shù)微分方程解法)。其中還包括了常微分方程的基本定理。
2025-07-03 22:55
【摘要】1第三章二階及高階微分方程可降階的高階方程線性齊次常系數(shù)方程線性非齊次常系數(shù)方程的待定系數(shù)法高階微分方程的應(yīng)用線性微分方程的基本理論2前一章介紹了一些一階微分方程的解法,在實(shí)際的應(yīng)用中,還會(huì)遇到高階的微分方程,在這一章,我們討論二階及二階以上的微分方程,即高階微分方程的
2025-05-08 06:42
【摘要】第8章偏微分方程數(shù)值解一、典型的偏微分方程介紹1.橢圓型方程:在研究有熱源穩(wěn)定狀態(tài)下的熱傳導(dǎo),有固定外力作用下薄膜的平衡問題時(shí),都會(huì)遇到Poisson方程Dyxyxfyuxu???????),(),(222202222??????yuxu
2025-08-14 11:00
【摘要】第三章一階微分方程的解的存在定理需解決的問題?,)(),(1000的解是否存在初值問題???????yxyyxfdxdy?,,)(),(2000是否唯一的解是存在若初值問題???????yxyyxfdxdy§解的存在唯一性定理
2025-01-29 04:55
【摘要】微分方程建模Ⅱ動(dòng)態(tài)模型正規(guī)戰(zhàn)與游擊戰(zhàn)?早在第一次世界大戰(zhàn)期間就提出了幾個(gè)預(yù)測(cè)戰(zhàn)爭(zhēng)結(jié)局的數(shù)學(xué)模型,其中有描述傳統(tǒng)的正規(guī)戰(zhàn)爭(zhēng)的,也有考慮游擊戰(zhàn)爭(zhēng)的,以及雙方分別使用正規(guī)部隊(duì)和游擊部隊(duì)的所謂混合戰(zhàn)爭(zhēng)的。后來人們對(duì)這些模型作了改進(jìn)用以分析歷史上一些著名的戰(zhàn)爭(zhēng),如二戰(zhàn)中的硫磺島之戰(zhàn)和越南戰(zhàn)爭(zhēng)。預(yù)測(cè)戰(zhàn)爭(zhēng)勝負(fù)應(yīng)該考慮哪些因素?;
2024-08-31 00:58
【摘要】微分方程數(shù)值解課程設(shè)計(jì)姓名*****學(xué)號(hào)200******專業(yè)信息與計(jì)算科學(xué)課設(shè)題目:對(duì)初邊值問題2222xutu?????(0x1)0||10??
2025-01-21 04:03
2025-06-18 05:22