【摘要】探索勾股定理(第1課時)成都石室聯(lián)合中學楊澤海一、情境引入會標中央的圖案是趙爽弦圖,它與“勾股定理”有關,數(shù)學家曾建議用“勾股定理”的圖來作為與“外星人”聯(lián)系的信號.2020年世界數(shù)學家大會在我國北京召開,下圖是本屆數(shù)學家大會的會標:探究活動一:觀察下面地板磚示意圖:
2024-12-05 11:37
【摘要】第一篇:探索勾股定理說課稿 探索勾股定理說課稿 林銀花 課題:“勾股定理”第一課時 內(nèi)容:教材分析、教學過程設計、設計說明 一、教材分析 (一)教材所處的地位 這節(jié)課是九年制義務教育課程...
2024-11-04 23:02
【摘要】《探索勾股定理》教學設計一、教學目標設計【分析】本單元是八年級數(shù)學課本第一章勾股定理,單元教學目標為:(1)經(jīng)歷探索勾股定理及一個三角形是直角三角形的條件過程,發(fā)展合情推理能力,體會數(shù)形結合的思想。(2)掌握勾股定理,了解利用拼圖驗證勾股定理的方法,并能運用勾股定理解決一些實際問題。(3)掌握判斷一個三角形是直角三角形的條件,并能運用它解決一些實際
2025-04-25 23:43
【摘要】探索勾股定理(1)一、教學目標:知識技能:1、經(jīng)歷探索、驗證勾股定理的過程,發(fā)展推理能力。2、理解掌握勾股定理,會用勾股定理解決實際問題。過程方法:以教師為主導、學生為主體的學習方式,讓學生經(jīng)歷動手操作、實驗觀察、歸納猜想、驗證發(fā)現(xiàn)勾股定理的過程,培養(yǎng)學生探索能力,發(fā)展學生數(shù)形結合的數(shù)學思想方法。情感態(tài)度:1、通過引導學生動手操作
2024-12-02 02:16
【摘要】教學設計(教案)模板基本信息學科數(shù)學年級八教學形式教師郭金孌單位河南省新鄭市市直中學課題名稱探索勾股定理學情分析分析要點:、師生訪談、學生作業(yè)或試題分析反饋、問卷調(diào)查等;:主要分析學生現(xiàn)在的認知基礎(包括知識基礎和能力基礎),要形成本節(jié)內(nèi)容應該要走的認知發(fā)展線;3.
2024-12-05 13:14
【摘要】第一篇:《》說課稿(定稿) 《(1)》說課稿 一、教材分析: 本課是浙教版初中數(shù)學八年級上冊第二章第七課內(nèi)容,共分為兩個課時,本堂課是本課的第一課時。眾所周知,勾股定理是初中數(shù)學乃至幾何中十分重...
2024-11-04 14:15
【摘要】X古埃及人曾用下面的方法得到直角按照這種做法真能得到一個直角三角形嗎??古埃及人曾用下面的方法得到直角:用13個等距的結,把一根繩子分成等長的12段,然后以3個結,4個結,5個結的長度為邊長,用木樁釘成一個三角形,其中一個角便是直角。下面的三組數(shù)分別是一個三角形的三邊長a,b,c:
2024-12-03 02:56
【摘要】第一章勾股定理1探索勾股定理2022秋季數(shù)學八年級上冊?B認識勾股定理直角三角形兩直角邊的等于斜邊的,如果用a、b、c分別表示直角三角形的兩直角邊和斜邊,那么.自我診斷1.1.在△ABC中,∠C=90°,a、
2025-06-29 20:23
【摘要】勾股定理逆定理鐵山學校張宏財?一、教材分析?二、教學過程?三、說教法、學法與教學手段?四、教學反思一、教材分析?(一)本節(jié)課在教材的地位與作用?本節(jié)課是勾股定理的逆定理。它是在學過勾股定理的基礎上進行的。教科書以古埃及人的作圖為出發(fā)點,讓學生畫出一些兩邊的平方和
2024-12-04 01:51
【摘要】baca2+b2=c2ABC圖2—1(1)觀察圖2—1:正方形A中含有個小方格,即A的面積是個單位面積;正方形B中含有個小方格,即B的面積是個單位面積;正方形C中含有個小方格,即C的面積是
2024-12-10 01:30
【摘要】探索勾股定理北師大版八年級數(shù)學(上冊)玉溪市新平縣新化中學周健設計玉溪市新平縣新化中學周健制作ABCABC(圖中每個小方格代表一個單位面積)圖1-1圖1-2(1)觀察圖1-1正方形A中含有個小方格,即A的面積是
2024-12-12 08:47
【摘要】第1課時勾股定理(1)北師大版八年級上冊第一章勾股定理1探索勾股定理情景導入我們知道,任意三角形的三條邊必須滿足定理:三角形的兩邊之和大于第三邊。對于一些特殊的三角形,是否還存在其他特殊的關系?思考探究,獲取新知,分別測量它們的三條邊,看看三邊長的平方之間有怎么樣的關系?觀察圖形,正方形A
2025-03-19 03:09
【摘要】勾股定理的逆定理第1課時勾股定理的逆定理滬科版·八年級數(shù)學下冊狀元成才路狀元成才路新課導入勾股定理如果直角三角形兩直角邊長分別為a,b,斜邊長為c,那么a2+b2=c2.提問如果將條件和結論反過來,這個命題還成立嗎?狀元成才路
【摘要】2直角三角形第1課時勾股定理及其逆定理北師版八年級數(shù)學下冊新課導入我們學過直角三角形的哪些性質(zhì)和判定方法?與同伴交流.ABC想一想新課探究(1)直角三角形的兩個銳角有怎樣的關系?為什么?(2)如果一個三角形有兩個角互余,那么這個三角形是直角
2025-03-18 21:17
【摘要】勾股定理的逆定理第十七章勾股定理第1課時一、情境引入?據(jù)說,幾千年前的古埃及人就已經(jīng)知道,在一根繩子上連續(xù)打上等距離的13個結,然后,用釘子將第1個與第13個結釘在一起,拉緊繩子,再在第4個和第8個結處各釘上一個釘子,如圖。這樣圍成的三角形中,最長邊所對的角就是直角。知道為什么嗎?也就意味著,如果圍成三
2024-12-19 17:29