【摘要】平面向量基本定理一、問題情境(1)如何求此時豎直和水平方向速度?(2)利用什么法則?BAMN探究:給定平面內(nèi)兩個向量、,平面內(nèi)任一向量是否都可以在這兩向量方向上分解呢?分解平移共同起點OAB?鏈接幾何畫板平面向量基本定理
2024-11-24 17:12
【摘要】當(dāng)時,0??與同向,ba且是的倍;||b||a?當(dāng)時,0??與反向,ba且是的倍;||b||a||?當(dāng)時,0??0b?,且。||0
2024-11-21 03:31
【摘要】平面向量的坐標(biāo)運算鄭德松平面向量的坐標(biāo)運算霞浦第一中學(xué)1234-1-5-2-3-4xy501234-1-2-3-4o問題:若已知=(1,3),=(5,1),
2024-11-24 16:44
【摘要】1、平面向量的坐標(biāo)表示與平面向量分解定理的關(guān)系。2、平面向量的坐標(biāo)是如何定義的?3、平面向量的運算有何特點?類似地,由平面向量的分解定理,對于平面上的任意向量,均可以分解為不共線的兩個向量和使得a→11λa→22λa→=a
【摘要】第五單元平面向量與復(fù)數(shù)第一節(jié)平面向量的概念及其線性運算基礎(chǔ)梳理名稱定義表示法向量既有又有的量;向量的大小叫做向量的(或),向量_______模_________零向量長度為的向量;其方向是任意的
2024-11-24 18:19
2024-11-24 19:04
【摘要】第二節(jié)平面向量的基本定理及坐標(biāo)表示基礎(chǔ)梳理(1)平面向量基本定理定理:如果e1,e2是同一平面內(nèi)的兩個的向量,那么對于這一平面內(nèi)的任意向量a,一對實數(shù)λ1,λ2,使a=.其中
【摘要】題型二:平面向量的共線問題1、若A(2,3),B(x,4),C(3,y),且=2,則x=,y=2、已知向量a、b,且=a+2b,=-5a+6b,=7a-2b,則一定共線的三點是()A.A、B、DB.A、B、CC.B、C、DD.A、C、D3、如果e1、e2是平面α內(nèi)兩個不共線的向量
2025-04-03 01:23
【摘要】及其幾何意義1、向量:既有又有的量叫向量大小方向3、相等向量:長度且方向的向量叫相等向量2、共線向量(平行向量):(1)方向或_____的非零向量叫平行向量(2)規(guī)定:
2024-08-20 05:48
【摘要】平面向量的概念及運算一.【課標(biāo)要求】(1)平面向量的實際背景及基本概念通過力和力的分析等實例,了解向量的實際背景,理解平面向量和向量相等的含義,理解向量的幾何表示;(2)向量的線性運算①通過實例,掌握向量加、減法的運算,并理解其幾何意義;②通過實例,掌握向量數(shù)乘的運算,并理解其幾何意義,以及兩個向量共線的含義;③了解向量的線性運算性質(zhì)及其幾何意義(3)平面向量的基
2025-04-01 02:50
【摘要】下列命題:①若是定義在[-1,1]上的偶函數(shù),且在[-1,0]上是增函數(shù),,則②在中,A=B是sinA=sinB的充要條件.③若為非零向量,且,則.④要得到函數(shù)的圖像,只需將函數(shù)的圖像向右平移個單位.其中真命題的個數(shù)有 C.3 答案:B來源:09年陜西西安月考三題型:選擇題,難度:中檔已知向量,,.(
2025-01-23 09:48
【摘要】高中數(shù)學(xué)人教A版必修4教學(xué)過程板書設(shè)計說課流程教材分析:平面向量的數(shù)量積在數(shù)學(xué)、物理等學(xué)科中應(yīng)用廣泛。教材的地位、作用及特點借助向量對圖形的研究推進到了有效能算的水平平面向量的數(shù)量積是向量計算的重要組成部分,有著很重要的幾
2024-08-20 06:10
【摘要】§平面向量的坐標(biāo)運算(二)知識回顧平面向量的坐標(biāo)表示分別與x軸、y軸方向相同的兩單位向量i、j作為基底,任一向量a,有且只有一對實數(shù)x、y,使得Oxyijaa=xi+yj=(x,y)1.設(shè)則
2024-11-21 06:28
【摘要】3.5平面的法向量課堂互動講練知能優(yōu)化訓(xùn)練課前自主學(xué)案學(xué)習(xí)目標(biāo)學(xué)習(xí)目標(biāo),會求平面的法向量.2.能運用平面的法向量證明平行與垂直問題.課前自主學(xué)案溫故夯基1.如果一條直線l與平面α內(nèi)的______直線都垂直,那么就稱l與平面α垂直.2.如果一條直線垂直于一個平
【摘要】2020屆高考數(shù)學(xué)復(fù)習(xí)強化雙基系列課件25《平面向量及向量的基本運算》1)向量的有關(guān)概念①向量:既有大小又有方向的量。向量一般用……來表示,或用有向線段的起點與終點的大寫字母表示,如:。向量的大小即向量的模(長度),記作||。②零向量:長度為0的向量,記為,其方向
2024-11-22 00:27