【摘要】WORD資料可編輯圓錐曲線專題練習(xí)一、選擇題,則到另一焦點(diǎn)距離為()A.B.C.D.2.若橢圓的對(duì)稱軸為坐標(biāo)軸,長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的和為,焦距為,則
2025-07-03 02:09
【摘要】WORD資料可編輯圓錐曲線橢圓專項(xiàng)訓(xùn)練【例題精選】:例1求下列橢圓的標(biāo)準(zhǔn)方程: (1)與橢圓有相同焦點(diǎn),過(guò)點(diǎn); (2)一個(gè)焦點(diǎn)為(0,1)長(zhǎng)軸和短軸的長(zhǎng)度之比為t; (3)兩焦點(diǎn)與短軸一個(gè)端點(diǎn)為正三角形的頂點(diǎn),焦點(diǎn)到橢圓的最短距離為。
2025-07-01 15:55
【摘要】WORD資料可編輯(2,0),右頂點(diǎn)為(1)求雙曲線C的方程;(2)若直線與雙曲線C恒有兩個(gè)不同的交點(diǎn)A和B,且(其中O為原點(diǎn)).求k的取值范圍.解:(Ⅰ)設(shè)雙曲線方程為由已知得故雙曲線C的方程為(Ⅱ)將由直線l與雙曲線交
2025-07-01 15:52
【摘要】WORD資料可編輯經(jīng)典例題精析類型一:求曲線的標(biāo)準(zhǔn)方程 1.求中心在原點(diǎn),一個(gè)焦點(diǎn)為且被直線截得的弦AB的中點(diǎn)橫坐標(biāo)為的橢圓標(biāo)準(zhǔn)方程. 思路點(diǎn)撥:先確定橢圓標(biāo)準(zhǔn)方程的焦點(diǎn)的位置(定位),選擇相應(yīng)的標(biāo)準(zhǔn)方程,再利用待定系數(shù)法確定、(定量). 解析:
2025-07-01 16:01
【摘要】......圓錐曲線專題練習(xí)一、選擇題,則到另一焦點(diǎn)距離為()A.B.C.D.2.若橢圓的對(duì)稱軸為
【摘要】......圓錐曲線橢圓專項(xiàng)訓(xùn)練【例題精選】:例1求下列橢圓的標(biāo)準(zhǔn)方程: (1)與橢圓有相同焦點(diǎn),過(guò)點(diǎn); (2)一個(gè)焦點(diǎn)為(0,1)長(zhǎng)軸和短軸的長(zhǎng)度之比為t; (3)兩焦點(diǎn)與短軸一個(gè)端點(diǎn)為正三
【摘要】......(2,0),右頂點(diǎn)為(1)求雙曲線C的方程;(2)若直線與雙曲線C恒有兩個(gè)不同的交點(diǎn)A和B,且(其中O為原點(diǎn)).求k的取值范圍.解:(Ⅰ)設(shè)雙曲線方程為由已知得故雙曲線C的方
【摘要】WORD資料可編輯圓錐曲線一、橢圓:(1)橢圓的定義:平面內(nèi)與兩個(gè)定點(diǎn)的距離的和等于常數(shù)(大于)的點(diǎn)的軌跡。其中:兩個(gè)定點(diǎn)叫做橢圓的焦點(diǎn),焦點(diǎn)間的距離叫做焦距。注意:表示橢圓;表示線段;沒(méi)有軌跡;(2)橢圓的標(biāo)準(zhǔn)方程、圖象及幾何性質(zhì):中心在原點(diǎn),焦點(diǎn)
2025-06-28 01:54
【摘要】第九章 求曲線(或直線)方程解析幾何求曲線(或直線)的方程一、基礎(chǔ)知識(shí):1、求曲線(或直線)方程的思考方向大體有兩種,一個(gè)方向是題目中含幾何意義的條件較多(例如斜率,焦距,半軸長(zhǎng),半徑等),那么可以考慮利用幾何意義求出曲線方程中的要素的值,從而按定義確定方程;另一個(gè)方向是
2025-08-03 00:15
【摘要】解析幾何專題·經(jīng)典結(jié)論收集整理:宋氏資料2016-1-1有關(guān)解析幾何的經(jīng)典神級(jí)結(jié)論一、橢圓1.點(diǎn)處的切線平分在點(diǎn)處的外角.(橢圓的光學(xué)性質(zhì))2.平分在點(diǎn)處的外角,則焦點(diǎn)在直線上的射影點(diǎn)的軌跡是以長(zhǎng)軸為直徑的圓,除去長(zhǎng)軸的兩個(gè)端點(diǎn).(中位線)3.以焦點(diǎn)弦為直徑的圓必與對(duì)應(yīng)準(zhǔn)線相離.(第二定義)4.以焦點(diǎn)半徑為直徑的圓必與以長(zhǎng)軸為直徑
2025-08-14 04:54
【摘要】圓錐曲線選填題目1、為橢圓上一點(diǎn),分別是圓和上的點(diǎn),則的取值范圍是()A. B. C. D.2、已知,,是橢圓上一點(diǎn),則的最大值為________.3、【中點(diǎn)弦問(wèn)題】已知雙曲線的中心為原點(diǎn),是的焦點(diǎn),過(guò)的直線與相交于,兩點(diǎn),且的中點(diǎn)為,則的方程為()A. B. C. D.4、如圖,在等腰梯形中,,且.設(shè),,以,為焦
2025-04-03 00:04
【摘要】......有關(guān)解析幾何的經(jīng)典結(jié)論一、橢圓1.點(diǎn)處的切線平分在點(diǎn)處的外角.(橢圓的光學(xué)性質(zhì))2.平分在點(diǎn)處的外角,則焦點(diǎn)在直線上的射影點(diǎn)的軌跡是以長(zhǎng)軸為直徑的圓,除去長(zhǎng)軸的兩個(gè)端點(diǎn).(中位線)3.
【摘要】......經(jīng)典例題精析類型一:求曲線的標(biāo)準(zhǔn)方程 1.求中心在原點(diǎn),一個(gè)焦點(diǎn)為且被直線截得的弦AB的中點(diǎn)橫坐標(biāo)為的橢圓標(biāo)準(zhǔn)方程. 思路點(diǎn)撥:先確定橢圓標(biāo)準(zhǔn)方程的焦點(diǎn)的位置(定位),選擇相應(yīng)的標(biāo)準(zhǔn)方程,再利用待
【摘要】(2,0),右頂點(diǎn)為(1)求雙曲線C的方程;(2)若直線與雙曲線C恒有兩個(gè)不同的交點(diǎn)A和B,且(其中O為原點(diǎn)).求k的取值范圍.解:(Ⅰ)設(shè)雙曲線方程為由已知得故雙曲線C的方程為(Ⅱ)將由直線l與雙曲線交于不同的兩點(diǎn)得即①設(shè),則而于是②由①、②得故k的取值范圍為2..已知橢圓C:+=
【摘要】圓錐曲線,,直線與其相交于兩點(diǎn),中點(diǎn)的橫坐標(biāo)為,則此雙曲線的方程是A.B.C.D.21.(本小題滿分14分)已知常數(shù),向量,,,經(jīng)過(guò)原點(diǎn)以為方向向量的直線與經(jīng)過(guò)定點(diǎn)以為方向向量的直線相交于點(diǎn),:是否存在兩個(gè)定點(diǎn),,求出的坐標(biāo);若不存在,說(shuō)明理由.
2025-04-26 07:02