【摘要】焦半徑公式:若點是拋物線上一點,則該點到拋物線的焦點的距離(稱為焦半徑)是:,焦點弦長公式:過焦點弦長拋物線上的動點可設(shè)為P或或P已知拋物線,過焦點F的直線交拋物線于A、B兩點,直線的傾斜角為,求證:。直線與拋物線的位置關(guān)系把直線的方程和拋物線的方程聯(lián)立起來得到一個方程組。(1)方程組有一組解直線與拋物線相交或相切(一個公共點);(2)方程組有二組解直線與
2024-08-09 00:13
【摘要】高考數(shù)學(xué)常用公式及結(jié)論200條八.圓錐曲線221(0)xyabab????的參數(shù)方程是cossinxayb???????.221(0)xyabab????焦半徑公式)(21caxePF??,)(22xcaePF??.94.橢圓的的內(nèi)外部(1)點00(,)P
2024-11-15 00:07
【摘要】WORD資料可編輯圓錐曲線重要結(jié)論橢圓1.點P處的切線PT平分△PF1F2在點P處的外角.2.PT平分△PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.3.以焦點弦PQ為直徑的圓必與對應(yīng)準線相離
2025-04-13 05:08
【摘要】第九章 求曲線(或直線)方程解析幾何求曲線(或直線)的方程一、基礎(chǔ)知識:1、求曲線(或直線)方程的思考方向大體有兩種,一個方向是題目中含幾何意義的條件較多(例如斜率,焦距,半軸長,半徑等),那么可以考慮利用幾何意義求出曲線方程中的要素的值,從而按定義確定方程;另一個方向是
2024-08-09 00:15
【摘要】橢圓與雙曲線的對偶性質(zhì)--(必背的經(jīng)典結(jié)論)高三數(shù)學(xué)備課組橢圓1.點P處的切線PT平分△PF1F2在點P處的外角.2.PT平分△PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.3.以焦點弦PQ為直徑的圓必與對應(yīng)準線相離.4.以焦點半徑PF1為直徑的圓必與以長軸為直徑的圓內(nèi)切.5.若在橢圓上,則過的橢圓
2024-08-09 12:41
【摘要】純粹個人整理,盜版必須問我《圓錐曲線》知識要點及重要結(jié)論一、橢圓1定義,,點不存在.2標準方程,兩焦點為.,.3幾何性質(zhì)橢圓是軸對稱圖形,有兩條對稱軸.橢圓是中心對稱圖形,對稱中心是橢圓的中心.橢圓的頂點有四個,長軸長為,短軸長為,橢圓的焦點在長軸上.若橢圓的標準方程為,則;若橢圓的標準方程為,則.二、雙曲線1定義平面內(nèi)到
2025-07-03 02:09
【摘要】WORD資料可編輯有關(guān)解析幾何的經(jīng)典結(jié)論一、橢圓1.點P處的切線PT平分△PF1F2在點P處的外角.2.PT平分△PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.3.以焦點弦PQ為直徑的圓必與對
2025-04-13 05:13
【摘要】WORD資料可編輯橢圓與雙曲線--經(jīng)典結(jié)論橢圓1.點P處的切線PT平分△PF1F2在點P處的外角.2.PT平分△PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.3.以焦點弦PQ為直徑的圓必與
2025-07-01 15:58
【摘要】大慶目標教育圓錐曲線一、知識結(jié)構(gòu)在平面直角坐標系中,如果某曲線C(看作適合某種條件的點的集合或軌跡)上的點與一個二元方程f(x,y)=0的實數(shù)解建立了如下的關(guān)系:(1)曲線上的點的坐標都是這個方程的解;(2);這條曲線叫做方程的曲線.點與曲線的關(guān)系若曲線C的方程是f(x,y)=0,則點P0(x0,y0)在曲線C上f(x0,y0)=0;點P0(x0,y0)
2024-08-19 14:02
【摘要】秒殺高考圓錐曲線選填題——神奇結(jié)論法【神奇結(jié)論1】*橢圓上的點與焦點距離的最大值為,最小值為.*例1.(大連月考)設(shè)橢圓的中心在原點,坐標軸為對稱軸,一個焦點與短軸兩端點的連線互相垂直,且此焦點與長軸上較近的端點距離為,則此橢圓方程為________.例2.(沈陽協(xié)作校)設(shè)為橢圓的右焦點,橢圓上的點與點的距離的最大值為,最小值為,則橢圓上與
2025-04-26 08:13
【摘要】WORD資料可編輯圓錐曲線自編講義之基本量要求熟悉圓錐曲線的a、b、c、e、p、漸近線方程、準線方程、焦點坐標等數(shù)據(jù)的幾何意義和相互關(guān)系。(2011安徽理2)雙曲線的實軸長是 (A)2 (B)2 (C)4 (D)4【答案】C
2025-04-26 00:20
【摘要】......圓錐曲線的性質(zhì)一、基礎(chǔ)知識(一)橢圓:1、定義和標準方程:(1)平面上到兩個定點的距離和為定值(定值大于)的點的軌跡稱為橢圓,其中稱為橢圓的焦點,稱為橢圓的焦距(2)標準方程:①焦點在軸上的橢
2025-07-01 16:01
【摘要】橢圓中的相關(guān)問題一、橢圓中的最值問題:,內(nèi)有一點,為橢圓上任意一點,若要求最小,則這最小值是()A.B.C.D.,,為橢圓上任意一點,若要求最小,則這最小值是()A.B.C.D.3.橢圓上任一點橢圓到兩焦點橢圓,的距離之積的最大值是,最小值是。4.設(shè),則的
2024-08-05 11:38
【摘要】第十章圓錐曲線★知識網(wǎng)絡(luò)★橢圓雙曲線拋物線定義定義定義標準方程標準方程幾何性質(zhì)幾何性質(zhì)應(yīng)用應(yīng)用標準方程幾何性質(zhì)應(yīng)用圓錐曲線直線與圓錐曲線位置關(guān)系相交相切相離圓錐曲線的弦第1講橢圓★知識梳理★1.橢圓定義:(1)第一定義:平面內(nèi)與兩個定點的距離之和為常數(shù)的動點的軌跡叫橢圓,
2024-08-19 09:58
【摘要】......橢圓與雙曲線的對偶性質(zhì)--(必背的經(jīng)典結(jié)論)橢圓1.點P處的切線PT平分△PF1F2在點P處的外角.2.PT平分△PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,
2025-04-26 13:07