【正文】
rocess of proving has been expressed in brief.According to application,we presented a simple situation, for example, estimate integral value ,solve the limits of definite integral, define integral sign, pare the magnitude of integral value, prove the monotonic of function and Abel test and Dirichlet testWe have discussed the definite integral meanvalue theorem, the first mean value theorem, the second integral meanvalue theorem, and have given a detailed proof of these theorems process. On this basis, we also have discussed the Riemann first integral meanvalue theorem on the geometry. It makes the integral meanvalue theorem is more general, the case has a significant role in the discussion of practical issues in general.In the promotion of integral mean value theorem, we have discussed the integral meanvalue theorem of function in the initial closed interval in the case of discussing it in the open interval, the change has more convenience in solving some practical mathematical problem. In addition, we will promote the Riemann first integral meanvalue theorem on the geometry to the situation of the first and second type curve in integral theorem and The second type surface integral meanvalue theorem.Key words: integral meanvalue。在積分中值定理的推廣方面,我們由最初的在閉區(qū)間討論函數(shù)的積分中值定理情形轉(zhuǎn)換為在開(kāi)區(qū)間上討論函數(shù)上的積分中值定理,這個(gè)變化對(duì)于解決一些實(shí)際的數(shù)學(xué)問(wèn)題更為方便。我們討論了定積分中值定理、第一積分中值定理、第二積分中值定理,而且還給出了這些定理的詳細(xì)證明過(guò)程。而第二積分中值定理的漸進(jìn)性問(wèn)題只證明了其中的一種情形,其它證明過(guò)程只做簡(jiǎn)要說(shuō)明。同 濟(jì) 大 學(xué)畢 業(yè) 論 文(設(shè)計(jì))題 目:積分中值定理的推廣及應(yīng)用 學(xué) 號(hào): 姓 名: 年 級(jí): 學(xué) 院:信息科學(xué)技術(shù)學(xué)院 系 別:數(shù)學(xué)系 專(zhuān) 業(yè):信息與計(jì)算科學(xué) 指導(dǎo)教師: 完成日期: 年 月 日 摘 要本論文講述的主要內(nèi)容是積分中值定理及其應(yīng)用,我們將它主要分為以下幾個(gè)方面:積分中值定理、積分中值定理的推廣、積分中值定理中值點(diǎn)的漸進(jìn)性,積分中值定理的應(yīng)用。有關(guān)點(diǎn)的漸進(jìn)性,我們對(duì)第一積分中值定理的點(diǎn)的做了詳細(xì)的討論,給出詳細(xì)清楚的證明過(guò)程。對(duì)于應(yīng)用,我們給出了一些較簡(jiǎn)單的情形如估計(jì)積分值,求含有定積分的極限,確定積分號(hào),比較積分大小,證明函數(shù)的單調(diào)性還有對(duì)阿貝爾判別法和狄理克萊判別法這兩個(gè)定理的證明。在此基礎(chǔ)上,我們還討論了在幾何形體上的黎曼積分第一中值定理,它使得積分中值定理更加一般化,此情形對(duì)于討論一般實(shí)際問(wèn)題有很顯著作用。不僅如此,我們還將幾何形體上的黎曼積分第一中值定理推廣到第一、第二曲線型積分中定理和第一、第二曲面型積分中值定理情形。 theorem promotion 。progressive目 錄1 引言………………………………………………………………………………12 積分中值定理的證明……………………………………………………………2 定積分中值定理………………………………………………………………2 積分第一中值定理……………………………………………………………3 積分第二中值定理……………………………………………………………3 幾何形體上黎曼積分第一中值定理…………………………………………63 積分中值定理的推廣……………………………………………………………9 定積分中值定理的推廣………………………………………………………9 定積分第一中值定理的推廣………………………