【摘要】.,....三角函數(shù)與解三角形高考真題1.【2015湖南理17】設(shè)的內(nèi)角,,的對邊分別為,,,,且為鈍角.(1)證明:;(2)求的取值范圍.2.【2014遼寧理17】(本小題滿分12分)在中,內(nèi)角A,B,C的對邊a,b,c,且,已知,
2025-04-25 12:49
【摘要】1正余弦定理的專項題型題型1:利用正余弦定理判斷三角形形狀兩種途徑:(1)利用正、余弦定理把已知條件轉(zhuǎn)化為邊邊關(guān)系,通過因式分解、配方等得出邊的相應(yīng)關(guān)系,從而判斷三角形的形狀;(2)利用正、余弦定理把已知條件轉(zhuǎn)化為內(nèi)角的三角函數(shù)間的關(guān)系,通過三角函數(shù)恒等變形,得出內(nèi)角的關(guān)系,從而判斷出三角形的形狀,此時要注意應(yīng)用A+B+C=π這
2024-08-14 21:48
【摘要】.,.....三角函數(shù)與解三角形1.任意角的概念、弧度制(1)了解任意角的概念.(2)了解弧度制的概念,能進行弧度與角度的互化.2.三角函數(shù)(1)理解任意角三角函數(shù)(正弦、余弦、正切)的定義.(2)能利用單位圓中的三角函數(shù)線推導(dǎo)出,
2025-04-16 22:37
【摘要】專題考案解三角形(時間:90分鐘滿分:100分)一、選擇題(9×3′=27′)1.在△ABC中,“A30°”是“sinA”的()2.已知△ABC中,a=x,b=2,∠B=45°,若這個三角形有兩解,則的取值范圍是
2025-06-16 23:53
【摘要】解三角形高考大題,帶答案1.(寧夏17)(本小題滿分12分)BACDE如圖,是等邊三角形,是等腰直角三角形,,交于,.(Ⅰ)求的值;(Ⅱ)求.解:(Ⅰ)因為,,所以.所以. 6分(Ⅱ)在中,,由正弦定理.故. 12分2.(江蘇17)(14分)某地有三家工廠,分別位于矩形ABCD的頂點A、B及CD的中點P處,已知AB=20k
2025-06-27 18:56
2025-06-27 19:33
【摘要】三角函數(shù)解三角形專題 一.解答題(共33小題)1.設(shè)函數(shù)f(x)=cos2x+sin2(x+).(Ⅰ)求f(x)的最小正周期和單調(diào)遞增區(qū)間;(Ⅱ)當(dāng)x∈[﹣,)時,求f(x)的取值范圍.2.已知函數(shù)f(x)=4sinx?sin(x+)﹣1,(1)求f(x)的最小正周期;(2)求f(x)在區(qū)間[﹣,]上的最大值和最小值.3.已知函數(shù)f(x)=2sin(ax﹣
2024-08-19 23:16
【摘要】3??6?o1x1?y解答題1.已知函數(shù)2()3sin22sinfxxx??.(Ⅰ)若點(1,3)P?在角?的終邊上,求()f?的值;(Ⅱ)若[,]63x????,求()fx的值域.解:(Ⅰ)因為點(1,3)P?在角?的終邊上,所以3sin2?
2024-12-06 15:37
【摘要】解三角形練習(xí)題,,,分別為角,,所對邊,若,則此三角形一定是()B.直角三角形C.等腰三角形D.等腰或直角三角形2.在△中,角的對邊邊長分別為,則的值為A.38B.37C.36D.35::xR,+=:,
2024-08-20 17:02
【摘要】歡迎交流唯一QQ1294383109希望大家互相交流三角變換與解三角形6.如右圖,設(shè)A,B兩點在河的兩岸,一測量者在A的同側(cè),在所在的河岸邊選定一點C,測出AC的距離為50m,45ACB???,105CAB???后,就可以計算出A,B兩點的距離為(其中2????,3????,精確到)
2024-09-03 20:09
【摘要】《解三角形》一、正弦定理:=2R推論:(1)(2)a=2RsinAb=2RsinBc=2RsinC(3)1.在△中,若,則=2.在△中,b=6,A=300,則B=3.【2013山東文】在中,若滿足,,,則4.【2010山東高考填空1
2025-04-18 07:07
【摘要】特殊三角形專題練習(xí) 一.選擇題(共9小題)1.已知等腰三角形的周長為24,腰長為x,則x的取值范圍是( ?。.x>12B.x<6C.6<x<12D.0<x<122.若實數(shù)x,y滿足|x﹣4|+=0,則以x,y的值為兩邊長的等腰三角形的周長是( ?。.12B.16C.
2025-04-03 05:55
【摘要】........解三角形高考真題(一) 一.選擇題(共9小題)1.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c=,則C=( )A. B. C. D.2.在ABC中,角A,B,C的對
2025-04-26 12:34
【摘要】........必修五解三角形常考題型【典型題剖析】考察點1:利用正弦定理解三角形例1在ABC中,已知A:B:C=1:2:3,求a:b:c.例2在ABC中,已知c=+,C=30°,求a+b的取值范圍。
2025-04-03 02:04
【摘要】......1.(2013大綱)設(shè)的內(nèi)角的對邊分別為,.(I)求(II)若,求.2.(2013四川)在中,角的對邊分別為,且.(Ⅰ)求的值;(Ⅱ)若,,求向量在方向上的投影.3.(2013山東)設(shè)△的內(nèi)角所對的邊分別為,且